22 research outputs found

    Security for 5G Mobile Wireless Networks

    Get PDF
    The advanced features of 5G mobile wireless network systems yield new security requirements and challenges. This paper presents a comprehensive survey on security of 5G wireless network systems compared to the traditional cellular networks. The paper starts with a review on 5G wireless networks particularities as well as on the new requirements and motivations of 5G wireless security. The potential attacks and security services with the consideration of new service requirements and new use cases in 5G wireless networks are then summarized. The recent development and the existing schemes for the 5G wireless security are presented based on the corresponding security services including authentication, availability, data confidentiality, key management and privacy. The paper further discusses the new security features involving different technologies applied to 5G such as heterogeneous networks, device-to-device communications, massive multiple-input multiple-output, software defined networks and Internet of Things. Motivated by these security research and development activities, we propose a new 5G wireless security architecture, based on which the analysis of identity management and flexible authentication is provided. As a case study, we explore a handover procedure as well as a signaling load scheme to show the advantage of the proposed security architecture. The challenges and future directions of 5G wireless security are finally summarized

    Distributed trusted authority-based key management for beyond 5G network coding-enabled mobile small cells

    Get PDF
    The 5G cellular network is projected to be introduced in 2020 and takes advantage of the small cell technology to deliver ubiquitous 5G services in an energy efficient manner. The next logical step is the introduction of network coding enabled mobile small cells (NC-MSCs). These are networks of mobile devices which can be set up on-the-fly, based on demand, and cover the urban landscape. Furthermore, they allow network offloading through multi-hop device-to-device (D2D) communication to provide high data rate services. In this paper we introduce DISTANT, a decentralized key management scheme specifically designed to provide security in a network which takes advantage of the benefits of NC-MSCs. In our key management scheme, we distribute the certification authority (CA) functions using threshold secret sharing. Each network node is provided with a share of the master private key such that key management services are available “anywhere, anytime”. Finally, our distributed CA takes advantage of the self-generated certificate paradigm. Certificates can therefore be issued and renewed without the interaction of the distributed CA which minimizes the communication overhead

    Public key cryptography without certificates for beyond 5G mobile small cells

    Get PDF
    The 5G network takes advantage of the small cells technology. The next logical step is to cover the urban landscape with mobile small cells, to optimize network services. However, the introduction of mobile small cells raises various security challenges. Cryptographic solutions are capable of solving these as long as they are supported by appropriate key management schemes. The threshold-tolerant identity-based cryptosystem forms a solid basis for key management schemes for mobile small cells. However, this approach is unable to sustain security over time. Therefore, we introduce two extensions, proactive secret sharing and private key cloaking, to address this challenge

    A Survey Study of the Current Challenges and Opportunities of Deploying the ECG Biometric Authentication Method in IoT and 5G Environments

    Get PDF
    The environment prototype of the Internet of Things (IoT) has opened the horizon for researchers to utilize such environments in deploying useful new techniques and methods in different fields and areas. The deployment process takes place when numerous IoT devices are utilized in the implementation phase for new techniques and methods. With the wide use of IoT devices in our daily lives in many fields, personal identification is becoming increasingly important for our society. This survey aims to demonstrate various aspects related to the implementation of biometric authentication in healthcare monitoring systems based on acquiring vital ECG signals via designated wearable devices that are compatible with 5G technology. The nature of ECG signals and current ongoing research related to ECG authentication are investigated in this survey along with the factors that may affect the signal acquisition process. In addition, the survey addresses the psycho-physiological factors that pose a challenge to the usage of ECG signals as a biometric trait in biometric authentication systems along with other challenges that must be addressed and resolved in any future related research.
    corecore