2,246 research outputs found

    A review of wildland fire spread modelling, 1990-present 3: Mathematical analogues and simulation models

    Full text link
    In recent years, advances in computational power and spatial data analysis (GIS, remote sensing, etc) have led to an increase in attempts to model the spread and behvaiour of wildland fires across the landscape. This series of review papers endeavours to critically and comprehensively review all types of surface fire spread models developed since 1990. This paper reviews models of a simulation or mathematical analogue nature. Most simulation models are implementations of existing empirical or quasi-empirical models and their primary function is to convert these generally one dimensional models to two dimensions and then propagate a fire perimeter across a modelled landscape. Mathematical analogue models are those that are based on some mathematical conceit (rather than a physical representation of fire spread) that coincidentally simulates the spread of fire. Other papers in the series review models of an physical or quasi-physical nature and empirical or quasi-empirical nature. Many models are extensions or refinements of models developed before 1990. Where this is the case, these models are also discussed but much less comprehensively.Comment: 20 pages + 9 pages references + 1 page figures. Submitted to the International Journal of Wildland Fir

    Monotone cellular automata in a random environment

    Full text link
    In this paper we study in complete generality the family of two-state, deterministic, monotone, local, homogeneous cellular automata in Zd\mathbb{Z}^d with random initial configurations. Formally, we are given a set U={X1,,Xm}\mathcal{U}=\{X_1,\dots,X_m\} of finite subsets of Zd{0}\mathbb{Z}^d\setminus\{\mathbf{0}\}, and an initial set A0ZdA_0\subset\mathbb{Z}^d of `infected' sites, which we take to be random according to the product measure with density pp. At time tNt\in\mathbb{N}, the set of infected sites AtA_t is the union of At1A_{t-1} and the set of all xZdx\in\mathbb{Z}^d such that x+XAt1x+X\in A_{t-1} for some XUX\in\mathcal{U}. Our model may alternatively be thought of as bootstrap percolation on Zd\mathbb{Z}^d with arbitrary update rules, and for this reason we call it U\mathcal{U}-bootstrap percolation. In two dimensions, we give a classification of U\mathcal{U}-bootstrap percolation models into three classes -- supercritical, critical and subcritical -- and we prove results about the phase transitions of all models belonging to the first two of these classes. More precisely, we show that the critical probability for percolation on (Z/nZ)2(\mathbb{Z}/n\mathbb{Z})^2 is (logn)Θ(1)(\log n)^{-\Theta(1)} for all models in the critical class, and that it is nΘ(1)n^{-\Theta(1)} for all models in the supercritical class. The results in this paper are the first of any kind on bootstrap percolation considered in this level of generality, and in particular they are the first that make no assumptions of symmetry. It is the hope of the authors that this work will initiate a new, unified theory of bootstrap percolation on Zd\mathbb{Z}^d.Comment: 33 pages, 7 figure

    Probabilistic cellular automata, invariant measures, and perfect sampling

    Get PDF
    A probabilistic cellular automaton (PCA) can be viewed as a Markov chain. The cells are updated synchronously and independently, according to a distribution depending on a finite neighborhood. We investigate the ergodicity of this Markov chain. A classical cellular automaton is a particular case of PCA. For a 1-dimensional cellular automaton, we prove that ergodicity is equivalent to nilpotency, and is therefore undecidable. We then propose an efficient perfect sampling algorithm for the invariant measure of an ergodic PCA. Our algorithm does not assume any monotonicity property of the local rule. It is based on a bounding process which is shown to be also a PCA. Last, we focus on the PCA Majority, whose asymptotic behavior is unknown, and perform numerical experiments using the perfect sampling procedure

    Asynchronism Induces Second Order Phase Transitions in Elementary Cellular Automata

    Get PDF
    Cellular automata are widely used to model natural or artificial systems. Classically they are run with perfect synchrony, i.e., the local rule is applied to each cell at each time step. A possible modification of the updating scheme consists in applying the rule with a fixed probability, called the synchrony rate. For some particular rules, varying the synchrony rate continuously produces a qualitative change in the behaviour of the cellular automaton. We investigate the nature of this change of behaviour using Monte-Carlo simulations. We show that this phenomenon is a second-order phase transition, which we characterise more specifically as belonging to the directed percolation or to the parity conservation universality classes studied in statistical physics

    Universality of two-dimensional critical cellular automata

    Full text link
    We study the class of monotone, two-state, deterministic cellular automata, in which sites are activated (or 'infected') by certain configurations of nearby infected sites. These models have close connections to statistical physics, and several specific examples have been extensively studied in recent years by both mathematicians and physicists. This general setting was first studied only recently, however, by Bollob\'as, Smith and Uzzell, who showed that the family of all such 'bootstrap percolation' models on Z2\mathbb{Z}^2 can be naturally partitioned into three classes, which they termed subcritical, critical and supercritical. In this paper we determine the order of the threshold for percolation (complete occupation) for every critical bootstrap percolation model in two dimensions. This 'universality' theorem includes as special cases results of Aizenman and Lebowitz, Gravner and Griffeath, Mountford, and van Enter and Hulshof, significantly strengthens bounds of Bollob\'as, Smith and Uzzell, and complements recent work of Balister, Bollob\'as, Przykucki and Smith on subcritical models.Comment: 83 pages, 9 figures. This version contains significant changes to Section 8, correcting an error in the proof, and numerous additional minor change

    Finite size scaling in three-dimensional bootstrap percolation

    Full text link
    We consider the problem of bootstrap percolation on a three dimensional lattice and we study its finite size scaling behavior. Bootstrap percolation is an example of Cellular Automata defined on the dd-dimensional lattice {1,2,...,L}d\{1,2,...,L\}^d in which each site can be empty or occupied by a single particle; in the starting configuration each site is occupied with probability pp, occupied sites remain occupied for ever, while empty sites are occupied by a particle if at least \ell among their 2d2d nearest neighbor sites are occupied. When dd is fixed, the most interesting case is the one =d\ell=d: this is a sort of threshold, in the sense that the critical probability pcp_c for the dynamics on the infinite lattice Zd{\Bbb Z}^d switches from zero to one when this limit is crossed. Finite size effects in the three-dimensional case are already known in the cases 2\ell\le 2: in this paper we discuss the case =3\ell=3 and we show that the finite size scaling function for this problem is of the form f(L)=const/lnlnLf(L)={\mathrm{const}}/\ln\ln L. We prove a conjecture proposed by A.C.D. van Enter.Comment: 18 pages, LaTeX file, no figur

    Stochastic Cellular Automata Model for Stock Market Dynamics

    Get PDF
    In the present work we introduce a stochastic cellular automata model in order to simulate the dynamics of the stock market. A direct percolation method is used to create a hierarchy of clusters of active traders on a two dimensional grid. Active traders are characterised by the decision to buy, (+1), or sell, (-1), a stock at a certain discrete time step. The remaining cells are inactive,(0). The trading dynamics is then determined by the stochastic interaction between traders belonging to the same cluster. Most of the stylized aspects of the financial market time series are reproduced by the model.Comment: 17 pages and 7 figure
    corecore