13 research outputs found

    Inter-cell interference mitigation in LTE-advanced heterogeneous mobile networks

    Get PDF
    Heterogeneous Networks are one of the most effective solutions for enhancing the network performance of mobile systems, by deploying small cells within the coverage of the ordinary Macro cells. The goals of deploying such networks are to offload data from the possibly congested Macro cells towards the small cells and to achieve enhancements for outdoor/ indoor coverage in a cost-effective way. Moreover, heterogeneous networks aim to maximise the system capacity and to provide lower interference by reducing the distance between the transmitter and the receiver. However, inter-cell interference is a major technical challenge in heterogeneous networks, which mainly affects system performance and may cause a significant degradation in network throughput (especially for the edge users) in co-channel deployment. So, to overcome the aforementioned problem, both researchers and telecommunication operators are required to develop effective approaches that adapt different mobile system scenarios. The research study presented in this thesis provides a novel interference mitigation scheme, based on power control and time-domain inter-cell interference coordination to improve cell and users’ throughputs. In addition, powerful scheduling algorithms have been developed and optimised to adapt the proposed scheme for both macro and small cells. It is responsible for the optimum resource allocation to minimise the inter-cell interference to the minimum ranges. The focus of this work is for downlink inter-cell interference in Long Term Evolution (LTE- Advanced) mobile networks, as an example of OFDMA (orthogonal frequency division multiple access)-based networks. More attention is paid to the Pico cell as an important cell type in heterogeneous deployment, due to the direct backhauling with the macro cell to coordinate the resource allocation among cells tightly and efficiently. The intensive simulations and results analyses show that the proposed scheme demonstrates better performance with less complexity in terms of user and cell throughputs, and spectral efficiency, as compared with the previously employed schem

    Radio Resource Virtualization in Cellular Networks

    Get PDF
    Virtualization of wireless networks holds the promise of major gains in resource usage efficiency through spectrum/radio resources sharing between multiple service providers (SPs). Radio resources however are not like a simple orthogonal resource such as time slots on a wire and its shared quantity is a function of geography and signal strength, rather than orthogonal slices. To better exploit the radio resource usage, we propose a novel scheme - radio resource virtualization (RRV) that allows SPs to access overlapping spectrum slices both in time and in space considering the transmit power, the interference, and the usage scenario (capabilities/needs of devices). We first investigate the system capacity of a simple two-cell network and show that RRV often leads to better efficiency than the well-known separate spectrum virtualization (SSV) scheme. However, the use of RRV requires careful air-interface configuration due to interference in the overlapping slices of spectrum. Therefore we next examine scenarios of a multi-cell network with fractional frequency reuse (FFR) implementing five radio resources configuration cases. From the evaluation of capacity data obtained from simulations, a variety of tradeoffs exist between SPs if RRV is applied. One example shows that capacity of the SP that operates smaller cells almost doubles while capacity of the SP deployed in larger cells may drop by 20% per subscriber. Based on these tradeoffs, we suggest configuration maps in which a network resource manager can locate specific configurations according to the demand and capabilities of SPs and their subscribers. Finally, we consider a case study on top of LTE. A system-level simulator is developed following 3GPP standards and extensive simulations are conducted. We propose and test 3 schemes that integrate RRV into the LTE radio resource management (RRM) -- unconditional RRV, time domain muting (TDM) RRV and major-interferer time domain muting (MI-TDM) RRV. Along the same line as the capacity analysis, we compare those schemes with the traditional SSV and suggest configuration maps based on the produced tradeoffs. Our investigation of RRV provides a framework that evaluates the resource efficiency, and potentially the ability of customization and isolation of spectrum sharing in virtualized cellular networks

    Energy efficiency comparison between 2.1 GHz and 28 GHz based communication networks

    Get PDF
    Mobile communications have revolutionized the way we communicate around the globe, making communication easier, faster and cheaper. In the first three generations of mobile networks, the primary focus was on voice calls, and as such, the traffic on the networks was not as heavy as it currently is. Towards the fourth generation however, there was an explosive increase in mobile data traffic, driven in part by the heavy use of smart phones, tablets and cloud services, that is in turn increasing heavy energy consumption by the mobile networks to meet increased demand. Addition of power conditioning equipment adds on to the overall energy consumption of the base stations, necessitating deployment of energy efficient solutions to deal with the impacts and costs of heavy energy consumption. This thesis investigates the energy efficiency performance of mobile networks in various scenarios in a dense urban environment. Consideration is given to the future deployment of 5G networks, and simulations are carried out at 2.1 GHz and 28 GHz frequencies with a channel bandwidth of 20 MHz in the 2.1 GHz simulation and 20 MHz in 28 GHz scenario. The channel bandwidth of the 28 GHz system is then increased ten-fold and another system performance evaluation is then done. Parameters used for evaluating the system performance include the received signal strength, signal-to-interference-plus-noise-ratio, spectral efficiency and power efficiency are also considered. The results suggest that deployment of networks using mmWave frequencies with the same parameters as the 2.1 GHz does not improve the overall performance of the system but improves the throughput when a bandwidth of 200 MHz band is allocated. The use of antenna masking with down tilting improves the gains of the system in all three systems. The conclusion drawn is that if all factors are the same, mmWave systems can be installed in the same site locations as 2.1 GHz systems. However, to achieve better performance, some significant modifications would need to be considered, like the use of antenna arrays and beam steering techniques. This simulation has considered outdoor users only, with indoor users eliminated. The parameters in a real network deployment might differ and the results could change, which in turn could change the performance of the system

    Contributions to Analysis and Mitigation of Cochannel Interference in Cellular Wireless Networks

    Get PDF
    Cellular wireless networks have become a commodity. We use our cellular devices every day to connect to others, to conduct business, for entertainment. Strong demand for wireless access has made corresponding parts of radio spectrum very valuable. Consequently, network operators and their suppliers are constantly being pressured for its efficient use. Unlike the first and second generation cellular networks, current generations do not therefore separate geographical sites in frequency. This universal frequency reuse, combined with continuously increasing spatial density of the transmitters, leads to challenging interference levels in the network. This dissertation collects several contributions to analysis and mitigation of interference in cellular wireless networks. The contributions are categorized and set in the context of prior art based on key characteristics, then they are treated one by one. The first contribution encompasses dynamic signaling that measures instantaneous interference situations and allows only for such transmissions that do not harm each other excessively. A novel forward signaling approach is introduced as an alternative to traditional reverse signaling. Forward signaling allows the interference management decisions to be done at the receiver, where there is more relevant information available. The second contribution analyzes cross-link interference in heterogeneous networks. Cross-link interference is interference between downlink and uplink transmissions that can appear in time-division duplex (TDD) networks. It is shown that uplink reception of small cells can be disturbed considerably by macrocell downlink transmissions. We proposes an intuitive solution to the problem based on power control. Users in small cells have generally enough power headroom as the distance to the small base station is often short. The third contribution provides an extensive analysis of a specific interference managment method that the Long-Term Evolution (LTE) applies in cochannel heterogeneous deployments. We analyze this so-called time muting using a modern stochastic geometry approach and show that performance of the method strongly depends on residual interference in the muted sections of time. The fourth and last contribution analyzes the impact of interference rank, i.e., number of spatial streams at the interferer, on a beamformed or spatially block coded transmission. It is shown that when the interferer chooses to transmit multiple spatial streams, spreading the power in spatial domain has potential to decrease probability of outage at neighbor receiver, especially if the neighbor transmission uses beamforming

    Experimental analysis and proof-of-concept of distributed mechanisms for local area wireless networks

    Get PDF
    corecore