13,170 research outputs found

    ENERGY EFFICIENCY VIA HETEROGENEOUS NETWORK

    Get PDF
    The mobile telecommunication industry is growing at a phenomenal rate. On a daily basis, there are continuous inflow of mobile users and sophisticated devices into the mobile network. This has triggered a meteoric rise in mobile traffic; forcing network operators to embark on a series of projects to increase the capacity and coverage of mobile networks in line with growing traffic demands. A corollary to this development is the momentous rise in energy bills for mobile operators and the emission of a significant amount of CO2 into the atmosphere. This has become worrisome to the extent that regulatory bodies and environmentalist are calling for the adoption of more “green operation” to curtail these challenges. Green communication is an all-inclusive approach that champions the cause of overall network improvement, reduction in energy consumption and mitigation of carbon emission. The emergence of Heterogeneous network came as a means of fulfilling the vision of Green communication. Heterogeneous network is a blend of low power node overlaid on Macrocell to offload traffic from the Macrocell and enhance quality of service of cell edge users. Heterogeneous network seeks to boost the performance of LTE-Advanced beyond its present limit, and at the same time, reduce energy consumption in mobile wireless network. In this thesis, we explore the potential of heterogeneous network in enhancing the energy efficiency of mobile wireless network. Simulation process sees the use of a co-deployment of Macrocell and Picocell in cluster (Hot spot) and normal scenario. Finally, we compared the performance of each scenario using Cell Energy Efficiency and the Area Energy Efficiency as our performance metricfi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    A Comprehensive Survey of Potential Game Approaches to Wireless Networks

    Get PDF
    Potential games form a class of non-cooperative games where unilateral improvement dynamics are guaranteed to converge in many practical cases. The potential game approach has been applied to a wide range of wireless network problems, particularly to a variety of channel assignment problems. In this paper, the properties of potential games are introduced, and games in wireless networks that have been proven to be potential games are comprehensively discussed.Comment: 44 pages, 6 figures, to appear in IEICE Transactions on Communications, vol. E98-B, no. 9, Sept. 201

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig
    corecore