2,836 research outputs found

    From specialists to generalists : inductive biases of deep learning for higher level cognition

    Full text link
    Les réseaux de neurones actuels obtiennent des résultats de pointe dans une gamme de domaines problématiques difficiles. Avec suffisamment de données et de calculs, les réseaux de neurones actuels peuvent obtenir des résultats de niveau humain sur presque toutes les tâches. En ce sens, nous avons pu former des spécialistes capables d'effectuer très bien une tâche particulière, que ce soit le jeu de Go, jouer à des jeux Atari, manipuler le cube Rubik, mettre des légendes sur des images ou dessiner des images avec des légendes. Le prochain défi pour l'IA est de concevoir des méthodes pour former des généralistes qui, lorsqu'ils sont exposés à plusieurs tâches pendant l'entraînement, peuvent s'adapter rapidement à de nouvelles tâches inconnues. Sans aucune hypothèse sur la distribution génératrice de données, il peut ne pas être possible d'obtenir une meilleure généralisation et une meilleure adaptation à de nouvelles tâches (inconnues). Les réseaux de neurones actuels obtiennent des résultats de pointe dans une gamme de domaines problématiques difficiles. Une possibilité fascinante est que l'intelligence humaine et animale puisse être expliquée par quelques principes, plutôt qu'une encyclopédie de faits. Si tel était le cas, nous pourrions plus facilement à la fois comprendre notre propre intelligence et construire des machines intelligentes. Tout comme en physique, les principes eux-mêmes ne suffiraient pas à prédire le comportement de systèmes complexes comme le cerveau, et des calculs importants pourraient être nécessaires pour simuler l'intelligence humaine. De plus, nous savons que les vrais cerveaux intègrent des connaissances a priori détaillées spécifiques à une tâche qui ne pourraient pas tenir dans une courte liste de principes simples. Nous pensons donc que cette courte liste explique plutôt la capacité des cerveaux à apprendre et à s'adapter efficacement à de nouveaux environnements, ce qui est une grande partie de ce dont nous avons besoin pour l'IA. Si cette hypothèse de simplicité des principes était correcte, cela suggérerait que l'étude du type de biais inductifs (une autre façon de penser aux principes de conception et aux a priori, dans le cas des systèmes d'apprentissage) que les humains et les animaux exploitent pourrait aider à la fois à clarifier ces principes et à fournir source d'inspiration pour la recherche en IA. L'apprentissage en profondeur exploite déjà plusieurs biais inductifs clés, et mon travail envisage une liste plus large, en se concentrant sur ceux qui concernent principalement le traitement cognitif de niveau supérieur. Mon travail se concentre sur la conception de tels modèles en y incorporant des hypothèses fortes mais générales (biais inductifs) qui permettent un raisonnement de haut niveau sur la structure du monde. Ce programme de recherche est à la fois ambitieux et pratique, produisant des algorithmes concrets ainsi qu'une vision cohérente pour une recherche à long terme vers la généralisation dans un monde complexe et changeant.Current neural networks achieve state-of-the-art results across a range of challenging problem domains. Given enough data, and computation, current neural networks can achieve human-level results on mostly any task. In the sense, that we have been able to train \textit{specialists} that can perform a particular task really well whether it's the game of GO, playing Atari games, Rubik's cube manipulation, image caption or drawing images given captions. The next challenge for AI is to devise methods to train \textit{generalists} that when exposed to multiple tasks during training can quickly adapt to new unknown tasks. Without any assumptions about the data generating distribution it may not be possible to achieve better generalization and adaption to new (unknown) tasks. A fascinating possibility is that human and animal intelligence could be explained by a few principles (rather than an encyclopedia). If that was the case, we could more easily both understand our own intelligence and build intelligent machines. Just like in physics, the principles themselves would not be sufficient to predict the behavior of complex systems like brains, and substantial computation might be needed to simulate human intelligence. In addition, we know that real brains incorporate some detailed task-specific a priori knowledge which could not fit in a short list of simple principles. So we think of that short list rather as explaining the ability of brains to learn and adapt efficiently to new environments, which is a great part of what we need for AI. If that simplicity of principles hypothesis was correct it would suggest that studying the kind of inductive biases (another way to think about principles of design and priors, in the case of learning systems) that humans and animals exploit could help both clarify these principles and provide inspiration for AI research. Deep learning already exploits several key inductive biases, and my work considers a larger list, focusing on those which concern mostly higher-level cognitive processing. My work focuses on designing such models by incorporating in them strong but general assumptions (inductive biases) that enable high-level reasoning about the structure of the world. This research program is both ambitious and practical, yielding concrete algorithms as well as a cohesive vision for long-term research towards generalization in a complex and changing world

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Cognitive Maps

    Get PDF
    undefine

    Black Holes: Eliminating Information or Illuminating New Physics?

    Full text link
    Black holes, initially thought of as very interesting geometric constructions of nature, over time, have learnt to (often) come up with surprises and challenges. From the era of being described as merely some interesting and exotic solutions of \gr, they have, in modern times, really started to test our confidence in everything else, we thought we know about the nature. They have in this process, also earned a dreadsome reputation in some corners of theoretical physics. The most serious charge on the black holes is that they eat up information, never to release and subsequently erase it. This goes absolutely against the sacred principles of all other branches of fundamental sciences. This realization has shaken the very base of foundational concepts, both in quantum theory and gravity, which we always took for granted. Attempts to exorcise black holes of this charge, have led us to crossroads with concepts, hold dearly in quantum theory. The sphere of black hole's tussle with quantum theory has readily and steadily grown, from the advent of the Hawking radiation some four decades back, into domain of quantum information theory in modern times, most aptly, recently put in the form of the firewall puzzle. Do black holes really indicate something sinister about their existence or do they really take the lid off our comfort with ignoring the fundamental issues, our modern theories are seemingly plagued with? In this review, we focus on issues pertaining to black hole evaporation, the development of the information loss paradox, its recent formulation, the leading debates and promising directions in the community.Comment: Published in Univers

    Proceedings of the ECCS 2005 satellite workshop: embracing complexity in design - Paris 17 November 2005

    Get PDF
    Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr). Embracing complexity in design is one of the critical issues and challenges of the 21st century. As the realization grows that design activities and artefacts display properties associated with complex adaptive systems, so grows the need to use complexity concepts and methods to understand these properties and inform the design of better artifacts. It is a great challenge because complexity science represents an epistemological and methodological swift that promises a holistic approach in the understanding and operational support of design. But design is also a major contributor in complexity research. Design science is concerned with problems that are fundamental in the sciences in general and complexity sciences in particular. For instance, design has been perceived and studied as a ubiquitous activity inherent in every human activity, as the art of generating hypotheses, as a type of experiment, or as a creative co-evolutionary process. Design science and its established approaches and practices can be a great source for advancement and innovation in complexity science. These proceedings are the result of a workshop organized as part of the activities of a UK government AHRB/EPSRC funded research cluster called Embracing Complexity in Design (www.complexityanddesign.net) and the European Conference in Complex Systems (complexsystems.lri.fr)

    Copying and Evolution of Neuronal Topology

    Get PDF
    We propose a mechanism for copying of neuronal networks that is of considerable interest for neuroscience for it suggests a neuronal basis for causal inference, function copying, and natural selection within the human brain. To date, no model of neuronal topology copying exists. We present three increasingly sophisticated mechanisms to demonstrate how topographic map formation coupled with Spike-Time Dependent Plasticity (STDP) can copy neuronal topology motifs. Fidelity is improved by error correction and activity-reverberation limitation. The high-fidelity topology-copying operator is used to evolve neuronal topologies. Possible roles for neuronal natural selection are discussed

    On the link between conscious function and general intelligence in humans and machines

    Get PDF
    In popular media, there is often a connection drawn between the advent of awareness in artificial agents and those same agents simultaneously achieving human or superhuman level intelligence. In this work, we explore the validity and potential application of this seemingly intuitive link between consciousness and intelligence. We do so by examining the cognitive abilities associated with three contemporary theories of conscious function: Global Workspace Theory (GWT), Information Generation Theory (IGT), and Attention Schema Theory (AST). We find that all three theories specifically relate conscious function to some aspect of domain-general intelligence in humans. With this insight, we turn to the field of Artificial Intelligence (AI) and find that, while still far from demonstrating general intelligence, many state-of-the-art deep learning methods have begun to incorporate key aspects of each of the three functional theories. Given this apparent trend, we use the motivating example of mental time travel in humans to propose ways in which insights from each of the three theories may be combined into a unified model. We believe that doing so can enable the development of artificial agents which are not only more generally intelligent but are also consistent with multiple current theories of conscious function

    Precis of neuroconstructivism: how the brain constructs cognition

    Get PDF
    Neuroconstructivism: How the Brain Constructs Cognition proposes a unifying framework for the study of cognitive development that brings together (1) constructivism (which views development as the progressive elaboration of increasingly complex structures), (2) cognitive neuroscience (which aims to understand the neural mechanisms underlying behavior), and (3) computational modeling (which proposes formal and explicit specifications of information processing). The guiding principle of our approach is context dependence, within and (in contrast to Marr [1982]) between levels of organization. We propose that three mechanisms guide the emergence of representations: competition, cooperation, and chronotopy; which themselves allow for two central processes: proactivity and progressive specialization. We suggest that the main outcome of development is partial representations, distributed across distinct functional circuits. This framework is derived by examining development at the level of single neurons, brain systems, and whole organisms. We use the terms encellment, embrainment, and embodiment to describe the higher-level contextual influences that act at each of these levels of organization. To illustrate these mechanisms in operation we provide case studies in early visual perception, infant habituation, phonological development, and object representations in infancy. Three further case studies are concerned with interactions between levels of explanation: social development, atypical development and within that, developmental dyslexia. We conclude that cognitive development arises from a dynamic, contextual change in embodied neural structures leading to partial representations across multiple brain regions and timescales, in response to proactively specified physical and social environment
    corecore