603 research outputs found

    A Category Theoretic View of Nondeterministic Recursive Program Schemes

    Get PDF
    Deterministic recursive program schemes (RPS\u27s) have a clear category theoretic semantics presented by Ghani et al. and by Milius and Moss. Here we extend it to nondeterministic RPS\u27s. We provide a category theoretic notion of guardedness and of solutions. Our main result is a description of the canonical greatest solution for every guarded nondeterministic RPS, thereby giving a category theoretic semantics for nondeterministic RPS\u27s. We show how our notions and results are connected to classical work

    Relational semantics of linear logic and higher-order model-checking

    Full text link
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how his analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes.Comment: 24 pages. Submitte

    Relational Semantics of Linear Logic and Higher-order Model Checking

    Get PDF
    In this article, we develop a new and somewhat unexpected connection between higher-order model-checking and linear logic. Our starting point is the observation that once embedded in the relational semantics of linear logic, the Church encoding of any higher-order recursion scheme (HORS) comes together with a dual Church encoding of an alternating tree automata (ATA) of the same signature. Moreover, the interaction between the relational interpretations of the HORS and of the ATA identifies the set of accepting states of the tree automaton against the infinite tree generated by the recursion scheme. We show how to extend this result to alternating parity automata (APT) by introducing a parametric version of the exponential modality of linear logic, capturing the formal properties of colors (or priorities) in higher-order model-checking. We show in particular how to reunderstand in this way the type-theoretic approach to higher-order model-checking developed by Kobayashi and Ong. We briefly explain in the end of the paper how this analysis driven by linear logic results in a new and purely semantic proof of decidability of the formulas of the monadic second-order logic for higher-order recursion schemes

    Abstracts of the talks at the Second International Workshop on the Semantics of Programming Languages in Bad Honnef : March 19-23, 1979

    Get PDF

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201

    Polynomial Path Orders

    Full text link
    This paper is concerned with the complexity analysis of constructor term rewrite systems and its ramification in implicit computational complexity. We introduce a path order with multiset status, the polynomial path order POP*, that is applicable in two related, but distinct contexts. On the one hand POP* induces polynomial innermost runtime complexity and hence may serve as a syntactic, and fully automatable, method to analyse the innermost runtime complexity of term rewrite systems. On the other hand POP* provides an order-theoretic characterisation of the polytime computable functions: the polytime computable functions are exactly the functions computable by an orthogonal constructor TRS compatible with POP*.Comment: LMCS version. This article supersedes arXiv:1209.379

    Transposing partial components: an exercise on coalgebraic refinement

    Get PDF
    A partial component is a process which fails or dies at some stage, thus exhibiting a finite, more ephemeral behaviour than expected (eg, operating system crash). Partiality --- which is the rule rather than exception in formal modelling --- can be treated mathematically via totalization techniques. In the case of partial functions, totalization involves error values and exceptions. In the context of a coalgebraic approach to component semantics, this paper argues that the behavioural counterpart to such functional techniques should extend behaviour with try-again cycles preventing from component collapse, thus extending totalization or transposition from the algebraic to the coalgebraic context. We show that a refinement relationship holds between original and totalized components which is reasoned about in a coalgebraic approach to component refinement expressed in the pointfree binary relation calculus. As part of the pragmatic aims of this research, we also address the factorization of every such totalized coalgebra into two coalgebraic components --- the original one and an added front-end --- which cooperate in a client-serverstyle.Fundação para a Ciência e a Tecnologia (FCT) - PURe Project under contract POSI/ICHS/44304/2002

    Bindings as bounded natural functors

    Get PDF
    We present a general framework for specifying and reasoning about syntax with bindings. Abstract binder types are modeled using a universe of functors on sets, subject to a number of operations that can be used to construct complex binding patterns and binding-aware datatypes, including non-well-founded and infinitely branching types, in a modular fashion. Despite not committing to any syntactic format, the framework is “concrete” enough to provide definitions of the fundamental operators on terms (free variables, alpha-equivalence, and capture-avoiding substitution) and reasoning and definition principles. This work is compatible with classical higher-order logic and has been formalized in the proof assistant Isabelle/HOL
    • …
    corecore