651 research outputs found

    A Categorical Approach to Syntactic Monoids

    Full text link
    The syntactic monoid of a language is generalized to the level of a symmetric monoidal closed category D\mathcal D. This allows for a uniform treatment of several notions of syntactic algebras known in the literature, including the syntactic monoids of Rabin and Scott (D=\mathcal D= sets), the syntactic ordered monoids of Pin (D=\mathcal D = posets), the syntactic semirings of Pol\'ak (D=\mathcal D= semilattices), and the syntactic associative algebras of Reutenauer (D\mathcal D = vector spaces). Assuming that D\mathcal D is a commutative variety of algebras or ordered algebras, we prove that the syntactic D\mathcal D-monoid of a language LL can be constructed as a quotient of a free D\mathcal D-monoid modulo the syntactic congruence of LL, and that it is isomorphic to the transition D\mathcal D-monoid of the minimal automaton for LL in D\mathcal D. Furthermore, in the case where the variety D\mathcal D is locally finite, we characterize the regular languages as precisely the languages with finite syntactic D\mathcal D-monoids.Comment: arXiv admin note: substantial text overlap with arXiv:1504.0269

    Syntactic Monoids in a Category

    Get PDF
    The syntactic monoid of a language is generalized to the level of a symmetric monoidal closed category D. This allows for a uniform treatment of several notions of syntactic algebras known in the literature, including the syntactic monoids of Rabin and Scott (D = sets), the syntactic semirings of Polak (D = semilattices), and the syntactic associative algebras of Reutenauer (D = vector spaces). Assuming that D is an entropic variety of algebras, we prove that the syntactic D-monoid of a language L can be constructed as a quotient of a free D-monoid modulo the syntactic congruence of L, and that it is isomorphic to the transition D-monoid of the minimal automaton for L in D. Furthermore, in case the variety D is locally finite, we characterize the regular languages as precisely the languages with finite syntactic D-monoids

    Eilenberg Theorems for Free

    Get PDF
    Eilenberg-type correspondences, relating varieties of languages (e.g. of finite words, infinite words, or trees) to pseudovarieties of finite algebras, form the backbone of algebraic language theory. Numerous such correspondences are known in the literature. We demonstrate that they all arise from the same recipe: one models languages and the algebras recognizing them by monads on an algebraic category, and applies a Stone-type duality. Our main contribution is a variety theorem that covers e.g. Wilke's and Pin's work on ∞\infty-languages, the variety theorem for cost functions of Daviaud, Kuperberg, and Pin, and unifies the two previous categorical approaches of Boja\'nczyk and of Ad\'amek et al. In addition we derive a number of new results, including an extension of the local variety theorem of Gehrke, Grigorieff, and Pin from finite to infinite words

    Lambek vs. Lambek: Functorial Vector Space Semantics and String Diagrams for Lambek Calculus

    Full text link
    The Distributional Compositional Categorical (DisCoCat) model is a mathematical framework that provides compositional semantics for meanings of natural language sentences. It consists of a computational procedure for constructing meanings of sentences, given their grammatical structure in terms of compositional type-logic, and given the empirically derived meanings of their words. For the particular case that the meaning of words is modelled within a distributional vector space model, its experimental predictions, derived from real large scale data, have outperformed other empirically validated methods that could build vectors for a full sentence. This success can be attributed to a conceptually motivated mathematical underpinning, by integrating qualitative compositional type-logic and quantitative modelling of meaning within a category-theoretic mathematical framework. The type-logic used in the DisCoCat model is Lambek's pregroup grammar. Pregroup types form a posetal compact closed category, which can be passed, in a functorial manner, on to the compact closed structure of vector spaces, linear maps and tensor product. The diagrammatic versions of the equational reasoning in compact closed categories can be interpreted as the flow of word meanings within sentences. Pregroups simplify Lambek's previous type-logic, the Lambek calculus, which has been extensively used to formalise and reason about various linguistic phenomena. The apparent reliance of the DisCoCat on pregroups has been seen as a shortcoming. This paper addresses this concern, by pointing out that one may as well realise a functorial passage from the original type-logic of Lambek, a monoidal bi-closed category, to vector spaces, or to any other model of meaning organised within a monoidal bi-closed category. The corresponding string diagram calculus, due to Baez and Stay, now depicts the flow of word meanings.Comment: 29 pages, pending publication in Annals of Pure and Applied Logi

    Quantifiers on languages and codensity monads

    Full text link
    This paper contributes to the techniques of topo-algebraic recognition for languages beyond the regular setting as they relate to logic on words. In particular, we provide a general construction on recognisers corresponding to adding one layer of various kinds of quantifiers and prove a corresponding Reutenauer-type theorem. Our main tools are codensity monads and duality theory. Our construction hinges on a measure-theoretic characterisation of the profinite monad of the free S-semimodule monad for finite and commutative semirings S, which generalises our earlier insight that the Vietoris monad on Boolean spaces is the codensity monad of the finite powerset functor.Comment: 30 pages. Presentation improved and details of several proofs added. The main results are unchange

    A Fibrational Approach to Automata Theory

    Get PDF
    For predual categories C and D we establish isomorphisms between opfibrations representing local varieties of languages in C, local pseudovarieties of D-monoids, and finitely generated profinite D-monoids. The global sections of these opfibrations are shown to correspond to varieties of languages in C, pseudovarieties of D-monoids, and profinite equational theories of D-monoids, respectively. As an application, we obtain a new proof of Eilenberg's variety theorem along with several related results, covering varieties of languages and their coalgebraic modifications, Straubing's C-varieties, fully invariant local varieties, etc., within a single framework

    A Graph Model for Imperative Computation

    Get PDF
    Scott's graph model is a lambda-algebra based on the observation that continuous endofunctions on the lattice of sets of natural numbers can be represented via their graphs. A graph is a relation mapping finite sets of input values to output values. We consider a similar model based on relations whose input values are finite sequences rather than sets. This alteration means that we are taking into account the order in which observations are made. This new notion of graph gives rise to a model of affine lambda-calculus that admits an interpretation of imperative constructs including variable assignment, dereferencing and allocation. Extending this untyped model, we construct a category that provides a model of typed higher-order imperative computation with an affine type system. An appropriate language of this kind is Reynolds's Syntactic Control of Interference. Our model turns out to be fully abstract for this language. At a concrete level, it is the same as Reddy's object spaces model, which was the first "state-free" model of a higher-order imperative programming language and an important precursor of games models. The graph model can therefore be seen as a universal domain for Reddy's model
    • …
    corecore