2,475 research outputs found

    Semiclassical ionization dynamics of the hydrogen molecular ion in an electric field of arbitrary orientation

    Full text link
    Quasi-static models of barrier suppression have played a major role in our understanding of the ionization of atoms and molecules in strong laser fields. Despite their success, in the case of diatomic molecules these studies have so far been restricted to fields aligned with the molecular axis. In this paper we investigate the locations and heights of the potential barriers in the hydrogen molecular ion in an electric field of arbitrary orientation. We find that the barriers undergo bifurcations as the external field strength and direction are varied. This phenomenon represents an unexpected level of intricacy even on this most elementary level of the dynamics. We describe the dynamics of tunnelling ionization through the barriers semiclassically and use our results to shed new light on the success of a recent theory of molecular tunnelling ionization as well as earlier theories that restrict the electric field to be aligned with the molecular axis

    2-D Magnetohydrodynamic Simulations of Induced Plasma Dynamics in the Near-Core Region of a Galaxy Cluster

    Full text link
    We present results from numerical simulations of the cooling-core cluster A2199 produced by the two-dimensional (2-D) resistive magnetohydrodynamics (MHD) code MACH2. In our simulations we explore the effect of anisotropic thermal conduction on the energy balance of the system. The results from idealized cases in 2-D axisymmetric geometry underscore the importance of the initial plasma density in ICM simulations, especially the near-core values since the radiation cooling rate is proportional to ne2{n_e}^2. Heat conduction is found to be non-effective in preventing catastrophic cooling in this cluster. In addition we performed 2-D planar MHD simulations starting from initial conditions deliberately violating both thermal balance and hydrostatic equilibrium in the ICM, to assess contributions of the convective terms in the energy balance of the system against anisotropic thermal conduction. We find that in this case work done by the pressure on the plasma can dominate the early evolution of the internal energy over anisotropic thermal conduction in the presence of subsonic flows, thereby reducing the impact of the magnetic field. Deviations from hydrostatic equilibrium near the cluster core may be associated with transient activity of a central active galactic nucleus and/or remnant dynamical activity in the ICM and warrant further study in three dimensions.Comment: 16 pages, 13 figures, accepted for publication in MNRA

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec

    Intraband electron focusing in bilayer graphene

    Get PDF
    We propose an implementation of a valley selective electronic Veselago lens in bilayer graphene. We demonstrate that in the presence of an appropriately oriented potential step, low-energy electrons radiating from a point source can be re-focused coherently within the same band. The phenomenon is due to the trigonal warping of the band structure that leads to a negative refraction index. We show that the interference pattern can be controlled by an external mechanical strain.Comment: 14 pages, 8 figure

    Prediction of thickness limits of ideal polar ultrathin films

    Get PDF
    Competition between electronic and atomic reconstruction is a constantly recurring theme in transition-metal oxides. We use density functional theory calculations to study this competition for a model system consisting of a thin film of the polar, infinite-layer structure ACuO2 (A=Ca, Sr, Ba) grown on a nonpolar, perovskite SrTiO3 substrate. A transition from the bulk planar structure to a chain-type thin film accompanied by substantial changes to the electronic structure is predicted for a SrCuO2 film fewer than five unit cells thick. An analytical model explains why atomic reconstruction becomes more favorable than electronic reconstruction as the film becomes thinner, and suggests that similar considerations should be valid for other polar films

    A first principle (3+1) dimensional model for microtubule polymerization

    Full text link
    In this paper we propose a microscopic model to study the polymerization of microtubules (MTs). Starting from fundamental reactions during MT's assembly and disassembly processes, we systematically derive a nonlinear system of equations that determines the dynamics of microtubules in 3D. %coexistence with tubulin dimers in a solution. We found that the dynamics of a MT is mathematically expressed via a cubic-quintic nonlinear Schrodinger (NLS) equation. Interestingly, the generic 3D solution of the NLS equation exhibits linear growing and shortening in time as well as temporal fluctuations about a mean value which are qualitatively similar to the dynamic instability of MTs observed experimentally. By solving equations numerically, we have found spatio-temporal patterns consistent with experimental observations.Comment: 12 pages, 2 figures. Accepted in Physics Letters
    • …
    corecore