9,464 research outputs found

    Workshop sensing a changing world : proceedings workshop November 19-21, 2008

    Get PDF

    Technology assessment of advanced automation for space missions

    Get PDF
    Six general classes of technology requirements derived during the mission definition phase of the study were identified as having maximum importance and urgency, including autonomous world model based information systems, learning and hypothesis formation, natural language and other man-machine communication, space manufacturing, teleoperators and robot systems, and computer science and technology

    Space exploration: The interstellar goal and Titan demonstration

    Get PDF
    Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    Quality of Information in Mobile Crowdsensing: Survey and Research Challenges

    Full text link
    Smartphones have become the most pervasive devices in people's lives, and are clearly transforming the way we live and perceive technology. Today's smartphones benefit from almost ubiquitous Internet connectivity and come equipped with a plethora of inexpensive yet powerful embedded sensors, such as accelerometer, gyroscope, microphone, and camera. This unique combination has enabled revolutionary applications based on the mobile crowdsensing paradigm, such as real-time road traffic monitoring, air and noise pollution, crime control, and wildlife monitoring, just to name a few. Differently from prior sensing paradigms, humans are now the primary actors of the sensing process, since they become fundamental in retrieving reliable and up-to-date information about the event being monitored. As humans may behave unreliably or maliciously, assessing and guaranteeing Quality of Information (QoI) becomes more important than ever. In this paper, we provide a new framework for defining and enforcing the QoI in mobile crowdsensing, and analyze in depth the current state-of-the-art on the topic. We also outline novel research challenges, along with possible directions of future work.Comment: To appear in ACM Transactions on Sensor Networks (TOSN

    Multiagent System for Image Mining

    Get PDF
    The overdone growth, wide availability, and demands for remote sensing databases combined with human limits to analyze such huge datasets lead to a need to investigate tools, techniques, methodologies, and theories capable of assisting humans at extracting knowledge. Image mining arises as a solution to extract implicit knowledge intelligently and semiautomatically or other patterns not explicitly stored in the huge image databases. However, spatial databases are among the ones with the fastest growth due to the volume of spatial information produced many times a day, demanding the investigation of other means for knowledge extraction. Multiagent systems are composed of multiple computing elements known as agents that interact to pursuit their goals. Agents have been used to explore information in the distributed, open, large, and heterogeneous platforms. Agent mining is a potential technology that studies ways of interaction and integration between data mining and agents. This area brought advances to the technologies involved such as theories, methodologies, and solutions to solve relevant issues more precisely, accurately and faster. AgentGeo is evidence of this, a multiagent system of satellite image mining that, promotes advances in the state of the art of agent mining, since it relevant functions to extract knowledge from spatial databases

    Geographic ontology for major disasters: methodology and implementation

    Get PDF
    During a catastrophic event, the International Charter1 "Space and Major Disasters" is regularly activated and provides the rescue teams damage maps prepared by a photo-interpreter team basing on pre and post-disaster satellite images. A satellite image manual processing must be accomplished in most cases to build these maps, a complex and demanding process. Given the importance of time in such critical situations, automatic or semiautomatic tools are highly recommended. Despite the quick treatment presented by automatic processing, it usually presents a semantic gap issue. Our aim is to express expert knowledge using a well-defined knowledge representation method: ontologies and make semantics explicit in geographic and remote sensing applications by taking the ontology advantages in knowledge representation, expression, and knowledge discovery. This research focuses on the design and implementation of a comprehensive geographic ontology in the case of major disasters, that we named GEO-MD, and illustrates its application in the case of Haiti 2010 earthquake. Results show how the ontology integration reduces the semantic gap and improves the automatic classification accuracy

    Unlocking the capabilities of explainable fewshot learning in remote sensing

    Full text link
    Recent advancements have significantly improved the efficiency and effectiveness of deep learning methods for imagebased remote sensing tasks. However, the requirement for large amounts of labeled data can limit the applicability of deep neural networks to existing remote sensing datasets. To overcome this challenge, fewshot learning has emerged as a valuable approach for enabling learning with limited data. While previous research has evaluated the effectiveness of fewshot learning methods on satellite based datasets, little attention has been paid to exploring the applications of these methods to datasets obtained from UAVs, which are increasingly used in remote sensing studies. In this review, we provide an up to date overview of both existing and newly proposed fewshot classification techniques, along with appropriate datasets that are used for both satellite based and UAV based data. Our systematic approach demonstrates that fewshot learning can effectively adapt to the broader and more diverse perspectives that UAVbased platforms can provide. We also evaluate some SOTA fewshot approaches on a UAV disaster scene classification dataset, yielding promising results. We emphasize the importance of integrating XAI techniques like attention maps and prototype analysis to increase the transparency, accountability, and trustworthiness of fewshot models for remote sensing. Key challenges and future research directions are identified, including tailored fewshot methods for UAVs, extending to unseen tasks like segmentation, and developing optimized XAI techniques suited for fewshot remote sensing problems. This review aims to provide researchers and practitioners with an improved understanding of fewshot learnings capabilities and limitations in remote sensing, while highlighting open problems to guide future progress in efficient, reliable, and interpretable fewshot methods.Comment: Under review, once the paper is accepted, the copyright will be transferred to the corresponding journa
    corecore