5,666 research outputs found

    Process-Based Design and Integration of Wireless Sensor Network Applications

    Get PDF
    Abstract Wireless Sensor and Actuator Networks (WSNs) are distributed sensor and actuator networks that monitor and control real-world phenomena, enabling the integration of the physical with the virtual world. They are used in domains like building automation, control systems, remote healthcare, etc., which are all highly process-driven. Today, tools and insights of Business Process Modeling (BPM) are not used to model WSN logic, as BPM focuses mostly on the coordination of people and IT systems and neglects the integration of embedded IT. WSN development still requires significant special-purpose, low-level, and manual coding of process logic. By exploiting similarities between WSN applications and business processes, this work aims to create a holistic system enabling the modeling and execution of executable processes that integrate, coordinate, and control WSNs. Concretely, we present a WSNspecific extension for Business Process Modeling Notation (BPMN) and a compiler that transforms the extended BPMN models into WSN-specific code to distribute process execution over both a WSN and a standard business process engine. The developed tool-chain allows modeling of an independent control loop for the WSN.

    An efficient architecture for the integration of sensor and actuator networks into the future internet

    Get PDF
    In the future, sensors will enable a large variety of new services in different domains. Important application areas are service adaptations in fixed and mobile environments, ambient assisted living, home automation, traffic management, as well as management of smart grids. All these applications will share a common property, the usage of networked sensors and actuators. To ensure an efficient deployment of such sensor-actuator networks, concepts and frameworks for managing and distributing sensor data as well as for triggering actuators need to be developed. In this paper, we present an architecture for integrating sensors and actuators into the future Internet. In our concept, all sensors and actuators are connected via gateways to the Internet, that will be used as comprehensive transport medium. Additionally, an entity is needed for registering all sensors and actuators, and managing sensor data requests. We decided to use a hierarchical structure, comparable to the Domain Name Service. This approach realizes a cost-efficient architecture disposing of "plug and play" capabilities and accounting for privacy issues

    Supporting Cyber-Physical Systems with Wireless Sensor Networks: An Outlook of Software and Services

    Get PDF
    Sensing, communication, computation and control technologies are the essential building blocks of a cyber-physical system (CPS). Wireless sensor networks (WSNs) are a way to support CPS as they provide fine-grained spatial-temporal sensing, communication and computation at a low premium of cost and power. In this article, we explore the fundamental concepts guiding the design and implementation of WSNs. We report the latest developments in WSN software and services for meeting existing requirements and newer demands; particularly in the areas of: operating system, simulator and emulator, programming abstraction, virtualization, IP-based communication and security, time and location, and network monitoring and management. We also reflect on the ongoing efforts in providing dependable assurances for WSN-driven CPS. Finally, we report on its applicability with a case-study on smart buildings

    WiseEye: next generation expandable and programmable camera trap platform for wildlife research

    Get PDF
    Funding: The work was supported by the RCUK Digital Economy programme to the dot.rural Digital Economy Hub; award reference: EP/G066051/1. The work of S. Newey and RJI was part funded by the Scottish Government's Rural and Environment Science and Analytical Services (RESAS). Details published as an Open Source Toolkit, PLOS Journals at: http://dx.doi.org/10.1371/journal.pone.0169758Peer reviewedPublisher PD

    Modeling IoT-aware Business Processes - A State of the Art Report

    Get PDF
    This research report presents an analysis of the state of the art of modeling Internet of Things (IoT)-aware business processes. IOT links the physical world to the digital world. Traditionally, we would find information about events and processes in the physical world in the digital world entered by humans and humans using this information to control the physical world. In the IoT paradigm, the physical world is equipped with sensors and actuators to create a direct link with the digital world. Business processes are used to coordinate a complex environment including multiple actors for a common goal, typically in the context of administrative work. In the past few years, we have seen research efforts on the possibilities to model IoT- aware business processes, extending process coordination to real world entities directly. This set of research efforts is relatively small when compared to the overall research effort into the IoT and much of the work is still in the early research stage. To create a basis for a bridge between IoT and BPM, the goal of this report is to collect and analyze the state of the art of existing frameworks for modeling IoT-aware business processes.Comment: 42 page
    corecore