17,478 research outputs found

    Efficient memory management in VOD disk array servers usingPer-Storage-Device buffering

    Get PDF
    We present a buffering technique that reduces video-on-demand server memory requirements in more than one order of magnitude. This technique, Per-Storage-Device Buffering (PSDB), is based on the allocation of a fixed number of buffers per storage device, as opposed to existing solutions based on per-stream buffering allocation. The combination of this technique with disk array servers is studied in detail, as well as the influence of Variable Bit Streams. We also present an interleaved data placement strategy, Constant Time Length Declustering, that results in optimal performance in the service of VBR streams. PSDB is evaluated by extensive simulation of a disk array server model that incorporates a simulation based admission test.This research was supported in part by the National R&D Program of Spain, Project Number TIC97-0438.Publicad

    Efficient memory management in video on demand servers

    Get PDF
    In this article we present, analyse and evaluate a new memory management technique for video-on-demand servers. Our proposal, Memory Reservation Per Storage Device (MRPSD), relies on the allocation of a fixed, small number of memory buffers per storage device. Selecting adequate scheduling algorithms, information storage strategies and admission control mechanisms, we demonstrate that MRPSD is suited for the deterministic service of variable bit rate streams to intolerant clients. MRPSD allows large memory savings compared to traditional memory management techniques, based on the allocation of a certain amount of memory per client served, without a significant performance penaltyPublicad

    Minimizing buffer requirements in video-on-demand servers

    Get PDF
    23rd Euromicro Conference EUROMICRO 97: 'New Frontiers of Information Technology', Budapest, Hungary, 1-4 Sept 1997Memory management is a key issue when designing cost effective video on demand servers. State of the art techniques, like double buffering, allocate buffers in a per stream basis and require huge amounts of memory. We propose a buffering policy, namely Single Pair of Buffers, that dramatically reduces server memory requirements by reserving a pair of buffers per storage device. By considering in detail disk and network interaction, we have also identified the particular conditions under which this policy can be successfully applied to engineer video on demand servers. Reduction factors of two orders of magnitude compared to the double buffering approach can be obtained. Current disk and network parameters make this technique feasible.Publicad
    corecore