2,470 research outputs found

    Integrated Generation Management for Maximizing Renewable Resource Utilization

    Get PDF
    Two proposed methods to reduce the effective intermittency and improve the efficiency of wind power generation in the grid are spatial smoothing of wind generation and utilization of short term electrical storage to deal with lulls in production. In this thesis, based on a concept called integrated generation management (IGM), we explore the impact of spatial smoothing and the use of emerging plug-in hybrid electric vehicles (PHEVs) as a potential storage resource to the smart-grid. IGM combines nuclear, slow load-following coal, fast load-following natural gas, and renewable wind generation with an optimal control method to maximize the renewable generation and minimize the fossil generation. With the increasing penetration of PHEVs, the power grid is seeing new opportunities to make itself smarter than ever by utilizing those relatively large batteries. Based on current projections of PHEV market penetration and various wind generation scenarios, we demonstrate the potential for efficient wind integration at levels of approaching 30% of the aver- age electrical load with utilization efficiency exceeding 65%. At lower levels of integration (e.g. 15%), efficiencies are possible exceeding 85%

    The impact of domestic plug-in hybrid electric vehicles on power distribution system loads

    Get PDF
    The market for Plug-in Hybrid Electric Vehicle (PHEVs) is expected to grow significantly over the next few years and a number of new products are soon to come onto the market, such as the Toyota Prius plug-in version, . The charging demand of wide-scale use of PHEVs may have a significant impact on domestic electricity loads and could risk of overloading the power system if appropriate charging strategies not applied to prevent this. A Monte Carlo Simulation (MCS) model of domestic PHEV use and availability has been developed based on probabilistic characterisations obtained from UKTUS and quantifies charging demand of PHEVs as a function of time of day. The MCS model has been developed in order to simulate the impact on the electricity distribution system. This article also discusses the potential for responsive battery charging load from PHEVs

    Prospects for Plug-in Hybrid Electric Vehicles in the United States and Japan: A General Equilibrium Analysis

    Get PDF
    Abstract and PDF report are also available on the MIT Joint Program on the Science and Policy of Global Change website (http://globalchange.mit.edu/)The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low carbon alternative to today's gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition to conventional fuels was introduced into the MIT Emissions Prediction and Policy Analysis (EPPA) model as a perfect substitute for internal combustion engine (ICE-only) vehicles in two likely early-adopting markets, the United States and Japan. We investigate the effect of relative vehicle cost and all-electric range on the timing of PHEV market entry in the presence and absence of an advanced cellulosic biofuels technology and a strong (450ppm) economy-wide carbon constraint. Vehicle cost could be a significant barrier to PHEV entry unless fairly aggressive goals for reducing battery costs are met. If a low cost vehicle is available we find that the PHEV has the potential to reduce CO2 emissions, refined oil demand, and under a carbon policy the required CO2 price in both the United States and Japan. The emissions reduction potential of PHEV adoption depends on the carbon intensity of electric power generation and the size of the vehicle fleet. Thus, the technology is much more effective in reducing CO2 emissions if adoption occurs under an economy-wide cap and trade system that also encourages low-carbon electricity generation.BP Conversion Research Project and the MIT Joint Program on the Science and Policy of Global Change through a consortium of industrial sponsors and Federal grants

    Architectures for smart end-user services in the power grid

    Get PDF
    Abstract-The increase of distributed renewable electricity generators, such as solar cells and wind turbines, requires a new energy management system. These distributed generators introduce bidirectional energy flows in the low-voltage power grid, requiring novel coordination mechanisms to balance local supply and demand. Closed solutions exist for energy management on the level of individual homes. However, no service architectures have been defined that allow the growing number of end-users to interact with the other power consumers and generators and to get involved in more rational energy consumption patterns using intuitive applications. We therefore present a common service architecture that allows houses with renewable energy generation and smart energy devices to plug into a distributed energy management system, integrated with the public power grid. Next to the technical details, we focus on the usability aspects of the end-user applications in order to contribute to high service adoption and optimal user involvement. The presented architecture facilitates end-users to reduce net energy consumption, enables power grid providers to better balance supply and demand, and allows new actors to join with new services. We present a novel simulator that allows to evaluate both the power grid and data communication aspects, and illustrate a 22% reduction of the peak load by deploying a central coordinator inside the home gateway of an end-user

    Transforming Energy Networks via Peer to Peer Energy Trading: Potential of Game Theoretic Approaches

    Get PDF
    Peer-to-peer (P2P) energy trading has emerged as a next-generation energy management mechanism for the smart grid that enables each prosumer of the network to participate in energy trading with one another and the grid. This poses a significant challenge in terms of modeling the decision-making process of each participant with conflicting interest and motivating prosumers to participate in energy trading and to cooperate, if necessary, for achieving different energy management goals. Therefore, such decision-making process needs to be built on solid mathematical and signal processing tools that can ensure an efficient operation of the smart grid. This paper provides an overview of the use of game theoretic approaches for P2P energy trading as a feasible and effective means of energy management. As such, we discuss various games and auction theoretic approaches by following a systematic classification to provide information on the importance of game theory for smart energy research. Then, the paper focuses on the P2P energy trading describing its key features and giving an introduction to an existing P2P testbed. Further, the paper zooms into the detail of some specific game and auction theoretic models that have recently been used in P2P energy trading and discusses some important finding of these schemes.Comment: 38 pages, single column, double spac

    Technological Solutions for Energy Security and Sustainability

    Get PDF
    This paper addresses the question: how can we minimize the expected time between now and the time when we achieve three measures of sustainability and security together -- independence from oil in cars and trucks, very deep reductions in greenhouse gas emissions and deep reductions in natural gas for electricity? Specific new technologies and metrics for progress are discussed, in context, linked to new information from IEEE, NSF, the State of the Future project and other sources
    • 

    corecore