3,851 research outputs found

    A case study on regularity in cellular network deployment

    Full text link
    This paper aims to validate the β\beta-Ginibre point process as a model for the distribution of base station locations in a cellular network. The β\beta-Ginibre is a repulsive point process in which repulsion is controlled by the β\beta parameter. When β\beta tends to zero, the point process converges in law towards a Poisson point process. If β\beta equals to one it becomes a Ginibre point process. Simulations on real data collected in Paris (France) show that base station locations can be fitted with a β\beta-Ginibre point process. Moreover we prove that their superposition tends to a Poisson point process as it can be seen from real data. Qualitative interpretations on deployment strategies are derived from the model fitting of the raw data

    Large-scale Spatial Distribution Identification of Base Stations in Cellular Networks

    Full text link
    The performance of cellular system significantly depends on its network topology, where the spatial deployment of base stations (BSs) plays a key role in the downlink scenario. Moreover, cellular networks are undergoing a heterogeneous evolution, which introduces unplanned deployment of smaller BSs, thus complicating the performance evaluation even further. In this paper, based on large amount of real BS locations data, we present a comprehensive analysis on the spatial modeling of cellular network structure. Unlike the related works, we divide the BSs into different subsets according to geographical factor (e.g. urban or rural) and functional type (e.g. macrocells or microcells), and perform detailed spatial analysis to each subset. After examining the accuracy of Poisson point process (PPP) in BS locations modeling, we take into account the Gibbs point processes as well as Neyman-Scott point processes and compare their accuracy in view of large-scale modeling test. Finally, we declare the inaccuracy of the PPP model, and reveal the general clustering nature of BSs deployment, which distinctly violates the traditional assumption. This paper carries out a first large-scale identification regarding available literatures, and provides more realistic and more general results to contribute to the performance analysis for the forthcoming heterogeneous cellular networks

    Characterizing Spatial Patterns of Base Stations in Cellular Networks

    Full text link
    The topology of base stations (BSs) in cellular networks, serving as a basis of networking performance analysis, is considered to be obviously distinctive with the traditional hexagonal grid or square lattice model, thus stimulating a fundamental rethinking. Recently, stochastic geometry based models, especially the Poisson point process (PPP), attracts an ever-increasing popularity in modeling BS deployment of cellular networks due to its merits of tractability and capability for capturing nonuniformity. In this study, a detailed comparison between common stochastic models and real BS locations is performed. Results indicate that the PPP fails to precisely characterize either urban or rural BS deployment. Furthermore, the topology of real data in both regions are examined and distinguished by statistical methods according to the point interaction trends they exhibit. By comparing the corresponding real data with aggregative point process models as well as repulsive point process models, we verify that the capacity-centric deployment in urban areas can be modeled by typical aggregative processes such as the Matern cluster process, while the coverage-centric deployment in rural areas can be modeled by representativ

    Two-tier Spatial Modeling of Base Stations in Cellular Networks

    Full text link
    Poisson Point Process (PPP) has been widely adopted as an efficient model for the spatial distribution of base stations (BSs) in cellular networks. However, real BSs deployment are rarely completely random, due to environmental impact on actual site planning. Particularly, for multi-tier heterogeneous cellular networks, operators have to place different BSs according to local coverage and capacity requirement, and the diversity of BSs' functions may result in different spatial patterns on each networking tier. In this paper, we consider a two-tier scenario that consists of macrocell and microcell BSs in cellular networks. By analyzing these two tiers separately and applying both classical statistics and network performance as evaluation metrics, we obtain accurate spatial model of BSs deployment for each tier. Basically, we verify the inaccuracy of using PPP in BS locations modeling for either macrocells or microcells. Specifically, we find that the first tier with macrocell BSs is dispersed and can be precisely modelled by Strauss point process, while Matern cluster process captures the second tier's aggregation nature very well. These statistical models coincide with the inherent properties of macrocell and microcell BSs respectively, thus providing a new perspective in understanding the relationship between spatial structure and operational functions of BSs

    Performance Analysis of Small Cells' Deployment under Imperfect Traffic Hotspot Localization

    Full text link
    Heterogeneous Networks (HetNets), long been considered in operators' roadmaps for macrocells' network improvements, still continue to attract interest for 5G network deployments. Understanding the efficiency of small cell deployment in the presence of traffic hotspots can further draw operators' attention to this feature. In this context, we evaluate the impact of imperfect small cell positioning on the network performances. We show that the latter is mainly impacted by the position of the hotspot within the cell: in case the hotspot is near the macrocell, even a perfect positioning of the small cell will not yield improved performance due to the interference coming from the macrocell. In the case where the hotspot is located far enough from the macrocell, even a large error in small cell positioning would still be beneficial in offloading traffic from the congested macrocell.Comment: This article is already published in IEEE Global Communications Conference (GLOBECOM) 201

    Content Caching and Delivery over Heterogeneous Wireless Networks

    Full text link
    Emerging heterogeneous wireless architectures consist of a dense deployment of local-coverage wireless access points (APs) with high data rates, along with sparsely-distributed, large-coverage macro-cell base stations (BS). We design a coded caching-and-delivery scheme for such architectures that equips APs with storage, enabling content pre-fetching prior to knowing user demands. Users requesting content are served by connecting to local APs with cached content, as well as by listening to a BS broadcast transmission. For any given content popularity profile, the goal is to design the caching-and-delivery scheme so as to optimally trade off the transmission cost at the BS against the storage cost at the APs and the user cost of connecting to multiple APs. We design a coded caching scheme for non-uniform content popularity that dynamically allocates user access to APs based on requested content. We demonstrate the approximate optimality of our scheme with respect to information-theoretic bounds. We numerically evaluate it on a YouTube dataset and quantify the trade-off between transmission rate, storage, and access cost. Our numerical results also suggest the intriguing possibility that, to gain most of the benefits of coded caching, it suffices to divide the content into a small number of popularity classes.Comment: A shorter version is to appear in IEEE INFOCOM 201

    A Review of the Enviro-Net Project

    Get PDF
    Ecosystems monitoring is essential to properly understand their development and the effects of events, both climatological and anthropological in nature. The amount of data used in these assessments is increasing at very high rates. This is due to increasing availability of sensing systems and the development of new techniques to analyze sensor data. The Enviro-Net Project encompasses several of such sensor system deployments across five countries in the Americas. These deployments use a few different ground-based sensor systems, installed at different heights monitoring the conditions in tropical dry forests over long periods of time. This paper presents our experience in deploying and maintaining these systems, retrieving and pre-processing the data, and describes the Web portal developed to help with data management, visualization and analysis.Comment: v2: 29 pages, 5 figures, reflects changes addressing reviewers' comments v1: 38 pages, 8 figure

    Addressing the 5G cell switch-off problem with a multi-objective cellular genetic algorithm

    Get PDF
    Š 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The power consumption foreseen for 5G networks is expected to be substantially greater than that of 4G systems, mainly because of the ultra-dense deployments required to meet the upcoming traffic demands. This paper deals with a multi- objective formulation of the Cell Switch-Off (CSO) problem, a well-known and effective approach to save energy in such dense scenarios, which is addressed with an accurate, yet rather unknown multi-objective metaheuristic called MOCell (multi- objective cellular genetic algorithm). It has been evaluated over a different set of networks of increasing densification levels. The results have shown that MOCell is able to reach major energy savings when compared to a widely used multi-objective algorithm.TIN2016-75097-P Universidad de Målaga. Campus de Excelencia Internacional Andalucía Tech
    • …
    corecore