460 research outputs found

    Quarc: an architecture for efficient on-chip communication

    Get PDF
    The exponential downscaling of the feature size has enforced a paradigm shift from computation-based design to communication-based design in system on chip development. Buses, the traditional communication architecture in systems on chip, are incapable of addressing the increasing bandwidth requirements of future large systems. Networks on chip have emerged as an interconnection architecture offering unique solutions to the technological and design issues related to communication in future systems on chip. The transition from buses as a shared medium to networks on chip as a segmented medium has given rise to new challenges in system on chip realm. By leveraging the shared nature of the communication medium, buses have been highly efficient in delivering multicast communication. The segmented nature of networks, however, inhibits the multicast messages to be delivered as efficiently by networks on chip. Relying on extensive research on multicast communication in parallel computers, several network on chip architectures have offered mechanisms to perform the operation, while conforming to resource constraints of the network on chip paradigm. Multicast communication in majority of these networks on chip is implemented by establishing a connection between source and all multicast destinations before the message transmission commences. Establishing the connections incurs an overhead and, therefore, is not desirable; in particular in latency sensitive services such as cache coherence. To address high performance multicast communication, this research presents Quarc, a novel network on chip architecture. The Quarc architecture targets an area-efficient, low power, high performance implementation. The thesis covers a detailed representation of the building blocks of the architecture, including topology, router and network interface. The cost and performance comparison of the Quarc architecture against other network on chip architectures reveals that the Quarc architecture is a highly efficient architecture. Moreover, the thesis introduces novel performance models of complex traffic patterns, including multicast and quality of service-aware communication

    System level modelling and design of hypergraph based wireless system area networks for multi-computer systems

    Get PDF
    This thesis deals with issues pertaining the wireless multicomputer interconnection networks namely topology and Medium Access Control (MAC). It argues that new channel assignment technique based on regular low-dimensional hypergraph networks, the dual radio wireless hypermesh, represents a promising alternative high-performance wireless interconnection network for the future multicomputers to shared communication medium networks and/or ordinary wireless mesh networks, which have been widely used in current wireless networks. The focus of this work is on improving the network throughput while maintaining a relatively low latency of a wireless network system. By means of a Carrier Sense Multiple Access (CSMA) based design of the MAC protocol and based on the desirable features of hypermesh network topology a relatively high performance network has been introduced. Compared to the CSMA shared communication channel model, which is currently the de facto MAC protocol for most of wireless networks, our design is shown to achieve a significant increase in network throughput with less average network latency for large number of communication nodes. SystemC model of the proposed wireless hypermesh, validated through mathematical models, are then introduced. The analysis has been incorporated in the proper SystemC design methodology which facilitates the integration of communication modelling into the design modelling at the early stages of the system development. Another important application of SystemC modelling techniques is to perform meaningful comparative studies of different protocols, or new implementations to determine which communication scenario performs better and the ability to modify models to test system sensitivity and tune performance. Effects of different design parameters (e.g., packet sizes, number of nodes) has been carried out throughout this work. The results shows that the proposed structure has out perform the existing shared medium network structure and it can support relatively high number of wireless connected computers than conventional networks

    The Octopus switch

    Get PDF
    This chapter1 discusses the interconnection architecture of the Mobile Digital Companion. The approach to build a low-power handheld multimedia computer presented here is to have autonomous, reconfigurable modules such as network, video and audio devices, interconnected by a switch rather than by a bus, and to offload as much as work as possible from the CPU to programmable modules placed in the data streams. Thus, communication between components is not broadcast over a bus but delivered exactly where it is needed, work is carried out where the data passes through, bypassing the memory. The amount of buffering is minimised, and if it is required at all, it is placed right on the data path, where it is needed. A reconfigurable internal communication network switch called Octopus exploits locality of reference and eliminates wasteful data copies. The switch is implemented as a simplified ATM switch and provides Quality of Service guarantees and enough bandwidth for multimedia applications. We have built a testbed of the architecture, of which we will present performance and energy consumption characteristics

    Traffic Optimization in Data Center and Software-Defined Programmable Networks

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A Simple Non-Deterministic Approach Can Adapt to Complex Unpredictable 5G Cellular Networks

    Full text link
    5G cellular networks are envisioned to support a wide range of emerging delay-oriented services with different delay requirements (e.g., 20ms for VR/AR, 40ms for cloud gaming, and 100ms for immersive video streaming). However, due to the highly variable and unpredictable nature of 5G access links, existing end-to-end (e2e) congestion control (CC) schemes perform poorly for them. In this paper, we demonstrate that properly blending non-deterministic exploration techniques with straightforward proactive and reactive measures is sufficient to design a simple yet effective e2e CC scheme for 5G networks that can: (1) achieve high controllable performance, and (2) possess provable properties. To that end, we designed Reminis and through extensive experiments on emulated and real-world 5G networks, show the performance benefits of it compared with different CC schemes. For instance, averaged over 60 different 5G cellular links on the Standalone (SA) scenarios, compared with a recent design by Google (BBR2), Reminis can achieve 2.2x lower 95th percentile delay while having the same link utilization
    • …
    corecore