4,231 research outputs found

    Evaluation of a robot-assisted therapy for children with autism and intellectual disability

    Get PDF
    It is well established that robots can be suitable assistants in the care and treatment of children with Autism Spectrum Disorder (ASD). However, the majority of the research focuses on stand-alone interventions, high-functioning individuals and the success is evaluated via qualitative analysis of videos recorded during the interaction. In this paper, we present a preliminary evaluation of our on-going research on integrating robot-assisted therapy in the treatment of children with ASD and Intellectual Disability (ID), which is the most common case. The experiment described here integrates a robot-assisted imitation training in the standard treat‐ ment of six hospitalised children with various level of ID, who were engaged by a robot on imitative tasks and their progress assessed via a quantitative psycho- diagnostic tool. Results show success in the training and encourage the use of a robotic assistant in the care of children with ASD and ID with the exception of those with profound ID, who may need a different approach

    Evaluating the role of a humanoid robot to support learning in children with profound and multiple disabilities

    Get PDF
    Purpose The purpose of this paper is to identify ways teachers might employ a robot to achieve learning objectives with pupils with intellectual disabilities and potential outcome measures. Design/methodology/approach A series of five case studies where teacher-pupil dyads were observed during five planned video-recorded sessions with a humanoid robot. Engagement was rated in a classroom setting and during the last session with the robot. Video recordings were analysed for duration of engagement, teacher assistance and number of goals achieved. Findings Teachers identified a wide range of learning objectives ranging from an appreciation of cause and effect to improving the pupil's sense of direction. The robot's role could be to reward behaviour, provide cues or provide an active element to learning. Rated engagement was significantly higher with the robot than in the classroom. Research limitations/implications A robot with a range of functions that allowed it to be engaging and motivating for the wide range of pupils in special education would be expensive and require teachers to learn how to use it. The findings identify ways to provide evidence that this expenditure of time and money is worthwhile. Originality/value There is almost no research teachers can refer to on using robots to support learning in children with intellectual disabilities. This paper is therefore of value for researchers who wish to investigate using robots to educate children with intellectual disabilities, as it can provide vital information to aid study design

    Affect Recognition in Autism: a single case study on integrating a humanoid robot in a standard therapy.

    Get PDF
    Autism Spectrum Disorder (ASD) is a multifaceted developmental disorder that comprises a mixture of social impairments, with deficits in many areas including the theory of mind, imitation, and communication. Moreover, people with autism have difficulty in recognising and understanding emotional expressions. We are currently working on integrating a humanoid robot within the standard clinical treatment offered to children with ASD to support the therapists. In this article, using the A-B-A' single case design, we propose a robot-assisted affect recognition training and to present the results on the child’s progress during the five months of clinical experimentation. In the investigation, we tested the generalization of learning and the long-term maintenance of new skills via the NEPSY-II affection recognition sub-test. The results of this single case study suggest the feasibility and effectiveness of using a humanoid robot to assist with emotion recognition training in children with ASD

    “I’ll take care of you,” said the robot: Reflecting upon the Legal and Ethical Aspects of the Use and Development of Social Robots for Therapy

    Get PDF
    The insertion of robotic and artificial intelligent (AI) systems in therapeutic settings is accelerating. In this paper, we investigate the legal and ethical challenges of the growing inclusion of social robots in therapy. Typical examples of such systems are Kaspar, Hookie, Pleo, Tito, Robota, Nao, Leka or Keepon. Although recent studies support the adoption of robotic technologies for therapy and education, these technological developments interact socially with children, elderly or disabled, and may raise concerns that range from physical to cognitive safety, including data protection. Research in other fields also suggests that technology has a profound and alerting impact on us and our human nature. This article brings all these findings into the debate on whether the adoption of therapeutic AI and robot technologies are adequate, not only to raise awareness of the possible impacts of this technology but also to help steer the development and use of AI and robot technologies in therapeutic settings in the appropriate direction. Our contribution seeks to provide a thoughtful analysis of some issues concerning the use and development of social robots in therapy, in the hope that this can inform the policy debate and set the scene for further research.Horizon 2020(H2020)707404Article / Letter to editorInstituut voor Metajuridic

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Robotics Technology in Mental Health Care

    Full text link
    This chapter discusses the existing and future use of robotics and intelligent sensing technology in mental health care. While the use of this technology is nascent in mental health care, it represents a potentially useful tool in the practitioner's toolbox. The goal of this chapter is to provide a brief overview of the field, discuss the recent use of robotics technology in mental health care practice, explore some of the design issues and ethical issues of using robots in this space, and finally to explore the potential of emerging technology

    A proposal of accessibility guidelines for human-robot interaction

    Get PDF
    We will increasingly become dependent on automation to support our manufacturing and daily living, and robots are likely to take an important place in this. Unfortunately, currently not all the robots are accessible for all users. This is due to the different characteristics of users, as users with visual, hearing, motor or cognitive disabilities were not considered during the design, implementation or interaction phase, causing accessibility barriers to users who have limitations. This research presents a proposal for accessibility guidelines for human-robot interaction (HRI). The guidelines have been evaluated by seventeen HRI designers and/or developers. A questionnaire of nine five-point Likert Scale questions and 6 open-ended questions was developed to evaluate the proposed guidelines for developers and designers, in terms of four main factors: usability, social acceptance, user experience and social impact. The questions act as indicators for each factor. The majority (15 of 17 participants) agreed that the guidelines are helpful for them to design and implement accessible robot interfaces and applications. Some of them had considered some ad hoc guidelines in their design practice, but none of them showed awareness of or had applied all the proposed guidelines in their design practice, 72% of the proposed guidelines have been applied by less than or equal to 8 participants for each guideline. Moreover, 16 of 17 participants would use the proposed guidelines in their future robot designs or evaluation. The participants recommended the importance of aligning the proposed guidelines with safety requirements, environment of interaction (indoor or outdoor), cost and users’ expectations
    • 

    corecore