6,187 research outputs found

    Sustainable Development Goals and General Skills integrated through gamification in Higher education: a case study

    Full text link
    [EN] In Spain, Universities began to participate in International Cooperation for Development (ICD) in the '90s, mainly thanks to personal initiatives of university members. Nowadays ICD is a consolidated policy for higher education institutions. At this moment, Universities are committed with the Sustainable Development Goals (SDG) of the United Nations, which have constituted the core of the sustainable development agenda since 2015. SDG need to be considered from a multidisciplinary and integrated approach, especially in higher education. The accomplishment of the deal involves a change in the minds of lecturers and students, and innovative education strategies may help. Gamification is an important strategy to drive this change, due to the capabilities demonstrated to achieve deep learning and motivation improvement. The two-year innovation project applies gamification strategies to integrate SDG into the existing program with the aim of developing and evaluating General Skills (GS) in the Universitat Politècnica de València (UPV). The project is carried out by our innovation team GRIPAU (Interdisciplinary Group for University Learning). On the first year of the project, the pilot case study was carried out over 51 students of Biotechnology and Building MSC. The results showed the gamification as a powerful tool to integrate SDG and general skills in Higher Education. One time the pilot case study was concluded, the methodology was adjusted and the experience was extended to the other subjects within the project. The project second year plan includes applying the methodology to 255 students of 7 different subjects of Bachelor Degrees and MSC of Engineering, Architecture, Building Construction and Biotechnology, both in fall and spring terms. The methodology consists of planning different activities through the term. First, a motivation and awareness activity is carried out to introduce the SDG through a general questionnaire about the origin and limits using a gamification tool such as Kahoot. During the term, specific activities are developed with the aim of getting deeper knowledge about the SDG. The range of the activities is wide, from specific projects to debates. Finally, at the end of the term a final survey is conducted via gamification to get feedback on the level of awareness of the different issues addressed by the SDG and their guidelines. The results obtained with the first data collection activity, showed 69% of correct answers while in the final surveys were 62%. Similar results for the different scheduled data collection within the pilot case study with 76% and 60%, respectively, although the total number of students in the final surveys was only 135 because some subjects are developed on the spring semester. The results on the secondyear project are equivalent, with less correct answers for the final test than for the initial one. About the subjective impressions of the activities, only 20% of the students gave feedback. All of them reported that the activities were very fun, learning effective and they would recommend the tool.The authors gratefully acknowledge the financial support from the Universitat Politècnica de València, Convocatoria Docencia + Aprendizaje 2018 (A+D) PROYECTO DE INNOVACIÓN Y MEJORA EDUCATIVA (PIME).Guillén Guillamón, IE.; Moreno-Ramón, H.; Cabedo Fabres, M.; Ferrando Bataller, M.; Calvet, S.; Ibañez Asensio, S.; Jiménez Belenguer, AI. (2020). Sustainable Development Goals and General Skills integrated through gamification in Higher education: a case study. IATED Academy. 7853-7859. https://doi.org/10.21125/edulearn.2020.1979S7853785

    Using Gameplay Patterns to Gamify Learning Experiences

    Get PDF
    Gamification refers to the use of gaming elements to enhance user experience and engagement in non-gaming systems. In this paper we report the design and implementation of two higher education courses in which ludic elements were used to enhance the quality of the learning experience. A game can be regarded as a system of organised gameplay activities, and a course can be regarded as a system of organised learning activities. Leveraging this analogy, analysing games can provide valuable insights to organise learning activities within a learning experience. We examined a sample of successful commercial games to identify patterns of organisation of gameplay activities that could be applied to a course design. Five patterns were identified: quest structure, strategic open-endedness, non-linear progression, orientation, and challenge-based reward. These patterns were then used to define the instructional design of the courses. As a result, courses were organised as systems of quests that could be tackled through different strategies and in a non-linear way. Students received frequent feedback and were rewarded according to the challenges chosen, based on mechanics common in quest-based games. The courses involved two lecturers and 70 students. Learning journals were used throughout the term to collect data regarding student perceptions on the clarity and usefulness of the gamified approach, level of motivation and engagement in the courses, and relevance of the activities proposed. Results show that students felt challenged by the activities proposed and motivated to complete them, despite considering most activities as difficult. Students adopted different cognitive and behavioural strategies to cope with the courses’ demands. They had to define their own team project, defining the objectives, managing their times and coordinating task completion. The regular and frequent provision of feedback was highly appreciated. A sense of mastery was promoted and final achievement was positively impacted by the gamified strategy

    Training Competences in Industrial Risk Prevention with Lego® Serious Play®: A Case Study

    Get PDF
    This paper proposes the use of the Lego® Serious Play® (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017–2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of “gamification” dynamics with Lego® Serious Play®. In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams.Spanish Ministry of Science, Innovation and Universities / European Social Fund: Ramón y Cajal contract (RYC-2017-22222

    Training Competences in Industrial Risk Prevention with Lego (R) Serious Play (R): A Case Study

    Get PDF
    This paper proposes the use of the Lego (R) Serious Play (R) (LSP) methodology as a facilitating tool for the introduction of competences for Industrial Risk Prevention by engineering students from the industrial branch (electrical, electronic, mechanical and technological engineering), presenting the results obtained in the Universities of Cadiz and Seville in the academic years 2017-2019. Current Spanish legislation does not reserve any special legal attribution, nor does it require specific competence in occupational risk prevention for the regulated profession of a technical industrial engineer (Order CIN 351:2009), and only does so in a generic way for that of an industrial engineer (Order CIN 311:2009). However, these universities consider the training in occupational health and safety for these future graduates as an essential objective in order to develop them for their careers in the industry. The approach is based on a series of challenges proposed (risk assessments, safety inspections, accident investigations and fire protection measures, among others), thanks to the use of "gamification" dynamics with Lego (R) Serious Play (R). In order to carry the training out, a set of specific variables (industrial sector, legal and regulatory framework, business organization and production system), and transversal ones (leadership, teamwork, critical thinking and communication), are incorporated. Through group models, it is possible to identify dangerous situations, establish causes, share and discuss alternative proposals and analyze the economic, environmental and organizational impact of the technical solutions studied, as well as take the appropriate decisions, in a creative, stimulating, inclusive and innovative context. In this way, the theoretical knowledge which is acquired is applied to improve safety and health at work and foster the prevention of occupational risks, promoting the commitment, effort, motivation and proactive participation of the student teams

    Using motivation derived from computer gaming in the context of computer based instruction

    Get PDF
    This paper was originally presented at the IEEE Technically Sponsored SAI Computing Conference 2016, London, 13-15 July 2016. Abstract— this paper explores how to exploit game based motivation as a way to promote engagement in computer-based instruction, and in particular in online learning interaction. The paper explores the human psychology of gaming and how this can be applied to learning, the computer mechanics of media presentation, affordances and possibilities, and the emerging interaction of playing games and how this itself can provide a pedagogical scaffolding to learning. In doing so the paper focuses on four aspects of Game Based Motivation and how it may be used; (i) the game player’s perception; (ii) the game designers’ model of how to motivate; (iii) team aspects and social interaction as a motivating factor; (iv) psychological models of motivation. This includes the increasing social nature of computer interaction. The paper concludes with a manifesto for exploiting game based motivation in learning

    Framework to Enhance Teaching and Learning in System Analysis and Unified Modelling Language

    Get PDF
    Cowling, MA ORCiD: 0000-0003-1444-1563; Munoz Carpio, JC ORCiD: 0000-0003-0251-5510Systems Analysis modelling is considered foundational for Information and Communication Technology (ICT) students, with introductory and advanced units included in nearly all ICT and computer science degrees. Yet despite this, novice systems analysts (learners) find modelling and systems thinking quite difficult to learn and master. This makes the process of teaching the fundamentals frustrating and time intensive. This paper will discuss the foundational problems that learners face when learning Systems Analysis modelling. Through a systematic literature review, a framework will be proposed based on the key problems that novice learners experience. In this proposed framework, a sequence of activities has been developed to facilitate understanding of the requirements, solutions and incremental modelling. An example is provided illustrating how the framework could be used to incorporate visualization and gaming elements into a Systems Analysis classroom; therefore, improving motivation and learning. Through this work, a greater understanding of the approach to teaching modelling within the computer science classroom will be provided, as well as a framework to guide future teaching activities

    Developing Project Managers’ Transversal Competences Using Building Information Modeling

    Get PDF
    The emergence of building information modeling (BIM) methodology requires the training of professionals with both specific and transversal skills. In this paper, a project-based learning experience carried out in the context of a project management course at the University of Extremadura is analyzed. To that end, a questionnaire was designed and given to students who participated in the initiative. Results suggest that BIM can be considered a virtual learning environment, from which students value the competences developed. The emotional performance observed was quite flat. Similarly, students valued the usefulness of the initiative. Students expressed a desire for the methodological change of the university classes, and thought that BIM methodology could be useful for other courses. The results obtained show a line of work to be done to improve the training of students and university teaching

    Practice makes perfect – gamification of a competitive learning experience

    Get PDF
    The ability to provide and implement software solutions is a fundamental component of a computer scientist curriculum. Commonly referred to as the ability to program, this task involves the development of programs to address everyday problems. Over the last decade teaching practices have evolved alongside programming languages to facilitate the learning process. While abstracting the level of understanding has helped students with the fundamentals of software development, issues related to students’ engagement and motivation are still not adequately addressed. With motivation being a vital component of the students’ life cycle and at the basis of their engagement, the concept of software engineering introduced in the class needs to be revised and become more engaging so as to be practised thoroughly by the students. To address these challenges, educators have devised numerous frameworks to allow students to hone their programming skills. The idea of embedding gaming aspects into the learning cycle has led to the development of techniques such as serious games and game-based learning, while more recent techniques have been unified under the term gamification. Several researchers have incorporated the gamification concept into computer science classes in order to improve students’ engagement with the teaching material, with early evaluations confirming the effectiveness of this approach. The present study focuses on the use of a gamification platform to create stimulating content and increase motivation. Students were presented with a new gamification system designed to attract and hold their attention through a number of programming challenges in the form of a contest. The results of the experiment demonstrate the students’ behavioural changes towards a deeper cognitive engagement. The paper then further discusses the challenges that have arisen in this new learning environment, such as demotivation of students with low contest rankings. Teaching how to write good software has been part of an ongoing debate for the last decade. With student motivation being a central component, this paper discusses the use of a gamification environment to engage students with the teaching material and reinforce the concepts of software engineering introduced in class
    • …
    corecore