3,096 research outputs found

    Visualizing 2D Flows with Animated Arrow Plots

    Full text link
    Flow fields are often represented by a set of static arrows to illustrate scientific vulgarization, documentary film, meteorology, etc. This simple schematic representation lets an observer intuitively interpret the main properties of a flow: its orientation and velocity magnitude. We propose to generate dynamic versions of such representations for 2D unsteady flow fields. Our algorithm smoothly animates arrows along the flow while controlling their density in the domain over time. Several strategies have been combined to lower the unavoidable popping artifacts arising when arrows appear and disappear and to achieve visually pleasing animations. Disturbing arrow rotations in low velocity regions are also handled by continuously morphing arrow glyphs to semi-transparent discs. To substantiate our method, we provide results for synthetic and real velocity field datasets

    3D + time blood flow mapping using SPIM-microPIV in the developing zebrafish heart

    Get PDF
    We present SPIM-μPIV as a flow imaging system, capable of measuring in vivo flow information with 3D micron-scale resolution. Our system was validated using a phantom experiment consisting of a flow of beads in a 50 μm diameter FEP tube. Then, with the help of optical gating techniques, we obtained 3D + time flow fields throughout the full heartbeat in a ∼3 day old zebrafish larva using fluorescent red blood cells as tracer particles. From this we were able to recover 3D flow fields at 31 separate phases in the heartbeat. From our measurements of this specimen, we found the net pumped blood volume through the atrium to be 0.239 nL per beat. SPIM-μPIV enables high quality in vivo measurements of flow fields that will be valuable for studies of heart function and fluid-structure interaction in a range of small-animal models

    On the estimation of time dependent lift of a European Starling during flapping

    Get PDF
    We study the role of unsteady lift in the context of flapping wings in birds' flight. Both aerodynamicists and biologists attempt to address this subject, yet it seems that the contribution of the unsteady lift still holds many open questions. The current study deals with the estimation of unsteady aerodynamic forces on a freely flying bird through analysis of wingbeat kinematics and near wake flow measurements using time resolved particle image velocimetry. The aerodynamic forces are obtained through unsteady thin airfoil theory and lift calculation using the momentum equation for viscous flows. The unsteady lift is comprised of circulatory and non-circulatory components. Both are presented over wingbeat cycles. Using long sampling data, several wingbeat cycles have been analyzed in order to cover the downstroke and upstroke phases. It appears that the lift varies over the wingbeat cycle emphasizing its contribution to the total lift and its role in power estimations. It is suggested that the circulatory lift component cannot assumed to be negligible and should be considered when estimating lift or power of birds in flapping motion

    ANALYSIS AND VISUALIZATION OF FLOW FIELDS USING INFORMATION-THEORETIC TECHNIQUES AND GRAPH-BASED REPRESENTATIONS

    Get PDF
    Three-dimensional flow visualization plays an essential role in many areas of science and engineering, such as aero- and hydro-dynamical systems which dominate various physical and natural phenomena. For popular methods such as the streamline visualization to be effective, they should capture the underlying flow features while facilitating user observation and understanding of the flow field in a clear manner. My research mainly focuses on the analysis and visualization of flow fields using various techniques, e.g. information-theoretic techniques and graph-based representations. Since the streamline visualization is a popular technique in flow field visualization, how to select good streamlines to capture flow patterns and how to pick good viewpoints to observe flow fields become critical. We treat streamline selection and viewpoint selection as symmetric problems and solve them simultaneously using the dual information channel [81]. To the best of my knowledge, this is the first attempt in flow visualization to combine these two selection problems in a unified approach. This work selects streamline in a view-independent manner and the selected streamlines will not change for all viewpoints. My another work [56] uses an information-theoretic approach to evaluate the importance of each streamline under various sample viewpoints and presents a solution for view-dependent streamline selection that guarantees coherent streamline update when the view changes gradually. When projecting 3D streamlines to 2D images for viewing, occlusion and clutter become inevitable. To address this challenge, we design FlowGraph [57, 58], a novel compound graph representation that organizes field line clusters and spatiotemporal regions hierarchically for occlusion-free and controllable visual exploration. We enable observation and exploration of the relationships among field line clusters, spatiotemporal regions and their interconnection in the transformed space. Most viewpoint selection methods only consider the external viewpoints outside of the flow field. This will not convey a clear observation when the flow field is clutter on the boundary side. Therefore, we propose a new way to explore flow fields by selecting several internal viewpoints around the flow features inside of the flow field and then generating a B-Spline curve path traversing these viewpoints to provide users with closeup views of the flow field for detailed observation of hidden or occluded internal flow features [54]. This work is also extended to deal with unsteady flow fields. Besides flow field visualization, some other topics relevant to visualization also attract my attention. In iGraph [31], we leverage a distributed system along with a tiled display wall to provide users with high-resolution visual analytics of big image and text collections in real time. Developing pedagogical visualization tools forms my other research focus. Since most cryptography algorithms use sophisticated mathematics, it is difficult for beginners to understand both what the algorithm does and how the algorithm does that. Therefore, we develop a set of visualization tools to provide users with an intuitive way to learn and understand these algorithms

    Coupling of vortex breakdown and stability in a swirling flow

    Get PDF
    Swirling flows are ubiquitous over a large range of length scales and applications including micron-scale microfluidic devices up to geophysical flows such as tornadoes. As the viscous dissipation, shear, and centrifugal stresses interact, such flows can often exhibit unexpected fluid dynamics. Here, we use microfluidic experiments and numerical simulations to study the flow in a vortex T-mixer: a T-shaped channel with staggered, offset inlets. The vortex T-mixer flow is characterized by a single dominant vortex, the stability of which is closely coupled to the appearance of vortex breakdown. Specifically, at a Reynolds number of Re≈90, a first vortex breakdown region appears in the steady-state solution, rendering the vortex pulsatively unstable. A second vortex breakdown region appears at Re≈120, which restabilizes the vortex. Finally, a third vortex breakdown region appears at Re≈180, which renders the vortex helically unstable. Thus, a counterintuitive flow regime exists for the vortex T-mixer in which increasing the Reynolds number has a stabilizing effect on the steady-state flow. The pulsatively unstable vortex evolves into a periodically pulsating state with a Strouhal number of St≈0.5, and the helically unstable vortex evolves into a helically oscillating state with St≈1.75. These transitions can be explained within the framework of linear hydrodynamic stability. In addition, the vortex T-mixer flow exhibits multistability; multiple flow states are stable over various ranges of Re, including a narrow range of tristability for 160≤Re≤170, in which the steady state, the pulsatile oscillation, and the helical oscillation are all stable. This study provides experimental and numerical evidence of the close coupling between vortex breakdown and flow stability, including the restabilization of the flow with increasing Reynolds number due to the appearance of a vortex breakdown region, which will provide new insights into how vortex breakdown can affect the stability of a swirling flow

    Analysis and Comparison of Transonic Buffet Phenomenon over Several Three-Dimensional Wings

    Get PDF
    International audienceThe transonic buffet is a complex aerodynamic instability that appears on wings and airfoils at a high subsonic Mach number and/or angle of attack. It consists of a shock oscillation that induces pressure and notably lift fluctuations, thus limiting the flight envelope of civil aircraft. The aim of the present Paper is to improve the understanding of the flow physics of the three-dimensional transonic buffet over swept wings through the analysis and comparison of four different experimental databases. In particular, the objective is to identify characteristic values of the phenomenon such as Strouhal numbers, convection velocities, buffet onset, etc. It is shown that some dimensionless numbers are kept constant among the different databases and consequently can be considered as characteristics, whereas others change. The key factors in the understanding of the three-dimensional transonic buffet phenomenon lie in explaining common features but also the variability of transonic buffet characteristics in different configurations. In particular, it is shown that three-dimensional buffet is characterized by a Strouhal number in the range 0.2–0.3 and a spanwise convection velocity of 0.245 0.015 U∞, where U∞ denotes the freestream velocity. These characteristic ranges of frequencies are larger than those of the two-dimensional buffet phenomenon, which suggests different physical mechanisms
    • …
    corecore