125,431 research outputs found

    Interactive Chemical Reactivity Exploration

    Full text link
    Elucidating chemical reactivity in complex molecular assemblies of a few hundred atoms is, despite the remarkable progress in quantum chemistry, still a major challenge. Black-box search methods to find intermediates and transition-state structures might fail in such situations because of the high-dimensionality of the potential energy surface. Here, we propose the concept of interactive chemical reactivity exploration to effectively introduce the chemist's intuition into the search process. We employ a haptic pointer device with force-feedback to allow the operator the direct manipulation of structures in three dimensions along with simultaneous perception of the quantum mechanical response upon structure modification as forces. We elaborate on the details of how such an interactive exploration should proceed and which technical difficulties need to be overcome. All reactivity-exploration concepts developed for this purpose have been implemented in the Samson programming environment.Comment: 36 pages, 14 figure

    CoPhy: A Scalable, Portable, and Interactive Index Advisor for Large Workloads

    Get PDF
    Index tuning, i.e., selecting the indexes appropriate for a workload, is a crucial problem in database system tuning. In this paper, we solve index tuning for large problem instances that are common in practice, e.g., thousands of queries in the workload, thousands of candidate indexes and several hard and soft constraints. Our work is the first to reveal that the index tuning problem has a well structured space of solutions, and this space can be explored efficiently with well known techniques from linear optimization. Experimental results demonstrate that our approach outperforms state-of-the-art commercial and research techniques by a significant margin (up to an order of magnitude).Comment: VLDB201

    Multi-agent evolutionary systems for the generation of complex virtual worlds

    Full text link
    Modern films, games and virtual reality applications are dependent on convincing computer graphics. Highly complex models are a requirement for the successful delivery of many scenes and environments. While workflows such as rendering, compositing and animation have been streamlined to accommodate increasing demands, modelling complex models is still a laborious task. This paper introduces the computational benefits of an Interactive Genetic Algorithm (IGA) to computer graphics modelling while compensating the effects of user fatigue, a common issue with Interactive Evolutionary Computation. An intelligent agent is used in conjunction with an IGA that offers the potential to reduce the effects of user fatigue by learning from the choices made by the human designer and directing the search accordingly. This workflow accelerates the layout and distribution of basic elements to form complex models. It captures the designer's intent through interaction, and encourages playful discovery
    • …
    corecore