1,785 research outputs found

    Visual Speech Recognition

    Get PDF
    Lip reading is used to understand or interpret speech without hearing it, a technique especially mastered by people with hearing difficulties. The ability to lip read enables a person with a hearing impairment to communicate with others and to engage in social activities, which otherwise would be difficult. Recent advances in the fields of computer vision, pattern recognition, and signal processing has led to a growing interest in automating this challenging task of lip reading. Indeed, automating the human ability to lip read, a process referred to as visual speech recognition (VSR) (or sometimes speech reading), could open the door for other novel related applications. VSR has received a great deal of attention in the last decade for its potential use in applications such as human-computer interaction (HCI), audio-visual speech recognition (AVSR), speaker recognition, talking heads, sign language recognition and video surveillance. Its main aim is to recognise spoken word(s) by using only the visual signal that is produced during speech. Hence, VSR deals with the visual domain of speech and involves image processing, artificial intelligence, object detection, pattern recognition, statistical modelling, etc.Comment: Speech and Language Technologies (Book), Prof. Ivo Ipsic (Ed.), ISBN: 978-953-307-322-4, InTech (2011

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Taking the bite out of automated naming of characters in TV video

    No full text
    We investigate the problem of automatically labelling appearances of characters in TV or film material with their names. This is tremendously challenging due to the huge variation in imaged appearance of each character and the weakness and ambiguity of available annotation. However, we demonstrate that high precision can be achieved by combining multiple sources of information, both visual and textual. The principal novelties that we introduce are: (i) automatic generation of time stamped character annotation by aligning subtitles and transcripts; (ii) strengthening the supervisory information by identifying when characters are speaking. In addition, we incorporate complementary cues of face matching and clothing matching to propose common annotations for face tracks, and consider choices of classifier which can potentially correct errors made in the automatic extraction of training data from the weak textual annotation. Results are presented on episodes of the TV series ‘‘Buffy the Vampire Slayer”

    Adaptive threshold optimisation for colour-based lip segmentation in automatic lip-reading systems

    Get PDF
    A thesis submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in ful lment of the requirements for the degree of Doctor of Philosophy. Johannesburg, September 2016Having survived the ordeal of a laryngectomy, the patient must come to terms with the resulting loss of speech. With recent advances in portable computing power, automatic lip-reading (ALR) may become a viable approach to voice restoration. This thesis addresses the image processing aspect of ALR, and focuses three contributions to colour-based lip segmentation. The rst contribution concerns the colour transform to enhance the contrast between the lips and skin. This thesis presents the most comprehensive study to date by measuring the overlap between lip and skin histograms for 33 di erent colour transforms. The hue component of HSV obtains the lowest overlap of 6:15%, and results show that selecting the correct transform can increase the segmentation accuracy by up to three times. The second contribution is the development of a new lip segmentation algorithm that utilises the best colour transforms from the comparative study. The algorithm is tested on 895 images and achieves percentage overlap (OL) of 92:23% and segmentation error (SE) of 7:39 %. The third contribution focuses on the impact of the histogram threshold on the segmentation accuracy, and introduces a novel technique called Adaptive Threshold Optimisation (ATO) to select a better threshold value. The rst stage of ATO incorporates -SVR to train the lip shape model. ATO then uses feedback of shape information to validate and optimise the threshold. After applying ATO, the SE decreases from 7:65% to 6:50%, corresponding to an absolute improvement of 1:15 pp or relative improvement of 15:1%. While this thesis concerns lip segmentation in particular, ATO is a threshold selection technique that can be used in various segmentation applications.MT201

    Statistical Lip-Appearance Models Trained Automatically Using Audio Information

    Get PDF
    We aim at modeling the appearance of the lower face region to assist visual feature extraction for audio-visual speech processing applications. In this paper, we present a neural network based statistical appearance model of the lips which classifies pixels as belonging to the lips, skin, or inner mouth classes. This model requires labeled examples to be trained, and we propose to label images automatically by employing a lip-shape model and a red-hue energy function. To improve the performance of lip-tracking, we propose to use blue marked-up image sequences of the same subject uttering the identical sentences as natural nonmarked-up ones. The easily extracted lip shapes from blue images are then mapped to the natural ones using acoustic information. The lip-shape estimates obtained simplify lip-tracking on the natural images, as they reduce the parameter space dimensionality in the red-hue energy minimization, thus yielding better contour shape and location estimates. We applied the proposed method to a small audio-visual database of three subjects, achieving errors in pixel classification around 6%, compared to 3% for hand-placed contours and 20% for filtered red-hue
    corecore