922 research outputs found

    Transportation mode recognition fusing wearable motion, sound and vision sensors

    Get PDF
    We present the first work that investigates the potential of improving the performance of transportation mode recognition through fusing multimodal data from wearable sensors: motion, sound and vision. We first train three independent deep neural network (DNN) classifiers, which work with the three types of sensors, respectively. We then propose two schemes that fuse the classification results from the three mono-modal classifiers. The first scheme makes an ensemble decision with fixed rules including Sum, Product, Majority Voting, and Borda Count. The second scheme is an adaptive fuser built as another classifier (including Naive Bayes, Decision Tree, Random Forest and Neural Network) that learns enhanced predictions by combining the outputs from the three mono-modal classifiers. We verify the advantage of the proposed method with the state-of-the-art Sussex-Huawei Locomotion and Transportation (SHL) dataset recognizing the eight transportation activities: Still, Walk, Run, Bike, Bus, Car, Train and Subway. We achieve F1 scores of 79.4%, 82.1% and 72.8% with the mono-modal motion, sound and vision classifiers, respectively. The F1 score is remarkably improved to 94.5% and 95.5% by the two data fusion schemes, respectively. The recognition performance can be further improved with a post-processing scheme that exploits the temporal continuity of transportation. When assessing generalization of the model to unseen data, we show that while performance is reduced - as expected - for each individual classifier, the benefits of fusion are retained with performance improved by 15 percentage points. Besides the actual performance increase, this work, most importantly, opens up the possibility for dynamically fusing modalities to achieve distinct power-performance trade-off at run time

    Deep Learning for Sensor-based Human Activity Recognition: Overview, Challenges and Opportunities

    Full text link
    The vast proliferation of sensor devices and Internet of Things enables the applications of sensor-based activity recognition. However, there exist substantial challenges that could influence the performance of the recognition system in practical scenarios. Recently, as deep learning has demonstrated its effectiveness in many areas, plenty of deep methods have been investigated to address the challenges in activity recognition. In this study, we present a survey of the state-of-the-art deep learning methods for sensor-based human activity recognition. We first introduce the multi-modality of the sensory data and provide information for public datasets that can be used for evaluation in different challenge tasks. We then propose a new taxonomy to structure the deep methods by challenges. Challenges and challenge-related deep methods are summarized and analyzed to form an overview of the current research progress. At the end of this work, we discuss the open issues and provide some insights for future directions

    Artificial Intelligence for the Edge Computing Paradigm.

    Get PDF
    With modern technologies moving towards the internet of things where seemingly every financial, private, commercial and medical transaction being carried out by portable and intelligent devices; Machine Learning has found its way into every smart device and application possible. However, Machine Learning cannot be used on the edge directly due to the limited capabilities of small and battery-powered modules. Therefore, this thesis aims to provide light-weight automated Machine Learning models which are applied on a standard edge device, the Raspberry Pi, where one framework aims to limit parameter tuning while automating feature extraction and a second which can perform Machine Learning classification on the edge traditionally, and can be used additionally for image-based explainable Artificial Intelligence. Also, a commercial Artificial Intelligence software have been ported to work in a client/server setups on the Raspberry Pi board where it was incorporated in all of the Machine Learning frameworks which will be presented in this thesis. This dissertation also introduces multiple algorithms that can convert images into Time-series for classification and explainability but also introduces novel Time-series feature extraction algorithms that are applied to biomedical data while introducing the concept of the Activation Engine, which is a post-processing block that tunes Neural Networks without the need of particular experience in Machine Leaning. Also, a tree-based method for multiclass classification has been introduced which outperforms the One-to-Many approach while being less complex that the One-to-One method.\par The results presented in this thesis exhibit high accuracy when compared with the literature, while remaining efficient in terms of power consumption and the time of inference. Additionally the concepts, methods or algorithms that were introduced are particularly novel technically, where they include: • Feature extraction of professionally annotated, and poorly annotated time-series. • The introduction of the Activation Engine post-processing block. • A model for global image explainability with inference on the edge. • A tree-based algorithm for multiclass classification

    Ensemble residual network-based gender and activity recognition method with signals

    Get PDF
    Nowadays, deep learning is one of the popular research areas of the computer sciences, and many deep networks have been proposed to solve artificial intelligence and machine learning problems. Residual networks (ResNet) for instance ResNet18, ResNet50 and ResNet101 are widely used deep network in the literature. In this paper, a novel ResNet-based signal recognition method is presented. In this study, ResNet18, ResNet50 and ResNet101 are utilized as feature extractor and each network extracts 1000 features. The extracted features are concatenated, and 3000 features are obtained. In the feature selection phase, 1000 most discriminative features are selected using ReliefF, and these selected features are used as input for the third-degree polynomial (cubic) activation-based support vector machine. The proposed method achieved 99.96% and 99.61% classification accuracy rates for gender and activity recognitions, respectively. These results clearly demonstrate that the proposed pre-trained ensemble ResNet-based method achieved high success rate for sensors signals. © 2020, Springer Science+Business Media, LLC, part of Springer Nature
    • …
    corecore