1,414 research outputs found

    Control strategy for cooperating disparate manipulators

    Get PDF
    To manipulate large payloads typical of space construction, the concept of a small arm mounted on the end of a large arm is introduced. The main purposes of such a configuration are to increase the structural stiffness of the robot by bracing against or locking to a stationary frame, and to maintain a firm position constraint between the robot's base and workpieces by grasping them. Possible topologies for a combination of disparate large and small arms are discussed, and kinematics, dynamics, controls, and coordination of the two arms, especially when they brace at the tip of the small arm, are developed. The feasibility and improvement in performance are verified, not only with analytical work and simulation results but also with experiments on the existing arrangement Robotic Arm Large and Flexible and Small Articulated Manipulator

    A 17 degree of freedom anthropomorphic manipulator

    Get PDF
    A 17 axis anthropomorphic manipulator, providing coordinated control of two seven degree of freedom arms mounted on a three degree of freedom torso-waist assembly, is presented. This massively redundant telerobot, designated the Robotics Research K/B-2017 Dexterous Manipulator, employs a modular mechanism design with joint-mounted actuators based on brushless motors and harmonic drive gear reducers. Direct joint torque control at the servo level causes these high-output joint drives to behave like direct-drive actuators, facilitating the implementation of an effective impedance control scheme. The redundant, but conservative motion control system models the manipulator as a spring-loaded linkage with viscous damping and rotary inertia at each joint. This approach allows for real time, sensor-driven control of manipulator pose using a hierarchy of competing rules, or objective functions, to avoid unplanned collisions with objects in the workplace, to produce energy-efficient, graceful motion, to increase leverage, to control effective impedance at the tool or to favor overloaded joints

    Experimental validation of docking and capture using space robotics testbeds

    Get PDF
    This presentation describes the application of robotic and computer vision systems to validate docking and capture operations for space cargo transfer vehicles. Three applications are discussed: (1) air bearing systems in two dimensions that yield high quality free-flying, flexible, and contact dynamics; (2) validation of docking mechanisms with misalignment and target dynamics; and (3) computer vision technology for target location and real-time tracking. All the testbeds are supported by a network of engineering workstations for dynamic and controls analyses. Dynamic simulation of multibody rigid and elastic systems are performed with the TREETOPS code. MATRIXx/System-Build and PRO-MATLAB/Simulab are the tools for control design and analysis using classical and modern techniques such as H-infinity and LQG/LTR. SANDY is a general design tool to optimize numerically a multivariable robust compensator with a user-defined structure. Mathematica and Macsyma are used to derive symbolically dynamic and kinematic equations

    Noncollocated proprioceptive sensing for lightweight flexible robotic manipulators

    Get PDF
    This article presents the design of a noncollocated feedback system for flexible serial manipulators. The device is a passive serial chain of encoders and lightweight links, mounted in parallel with the manipulator. This measuring arm effectively decouples the manipulator's proprioception from its actuators by providing information on the actual end effector pose, accounting for both joint and link flexibility. The kinematic redundancy of the measuring chain allows for safe operation in the context of human–robot interaction. A simple yet effective error model is introduced to assess the suitability of the proposed sensor system in the context of robotic control. The practicality of the device is first demonstrated by building a physical joint-encoder assembly and a simplified planar measuring arm prototype. With this additional feedback, a task-space position controller is devised and tested in simulation. Finally, the simulation results are validated with an experimental 3-DoF lightweight manipulator prototype equipped with a five-joint measuring arm

    conceptual design and control strategy of a robotic cell for precision assembly in radar antenna systems

    Get PDF
    Abstract Dip-Brazing is a metal-joining process in which two or more metal items are joined together using a low-temperature melting element as filler. In telecommunication field, this process is used to fabricate radar antenna systems. The process begins with the assembly of the parts constituting the antenna and the thin filler sheet used to join the parts. The mechanical deformations of the micro-pins of the parts allow to obtain a more compact mechanical assembly, before than the antenna system is subjected to an immersion cycle used for adjoining the parts. In this work, we present the design of the robotic cell to automate the assembly procedure in the aluminum dip-brazing of antenna in MBDA missile systems. In particular, we propose a robotic cell using two stations: i) assembly, using a SCARA manipulator; ii) riveting, using a three-axis cartesian robot designed for positioning a radial riveting unit. Motion control of the robots and scheduling of the operations is presented. Experiments simulated in a virtual environment show an almost perfect tracking of the designed trajectories. The standardization of the procedure as well as the reduction of its execution time is thus achieved for the industrial scenario

    Flight telerobot mechanism design: Problems and challenges

    Get PDF
    Problems and challenges of designing flight telerobot mechanisms are discussed. Specific experiences are drawn from the following system developments: (1) the Force Reflecting Hand Controller, (2) the Smart End Effector, (3) the force-torque sensor, and a generic multi-degrees-of-freedom manipulator

    A simple 5-DOF walking robot for space station application

    Get PDF
    Robots on the NASA space station have a potential range of applications from assisting astronauts during EVA (extravehicular activity), to replacing astronauts in the performance of simple, dangerous, and tedious tasks; and to performing routine tasks such as inspections of structures and utilities. To provide a vehicle for demonstrating the pertinent technologies, a simple robot is being developed for locomotion and basic manipulation on the proposed space station. In addition to the robot, an experimental testbed was developed, including a 1/3 scale (1.67 meter modules) truss and a gravity compensation system to simulate a zero-gravity environment. The robot comprises two flexible links connected by a rotary joint, with a 2 degree of freedom wrist joints and grippers at each end. The grippers screw into threaded holes in the nodes of the space station truss, and enable it to walk by alternately shifting the base of support from one foot (gripper) to the other. Present efforts are focused on mechanical design, application of sensors, and development of control algorithms for lightweight, flexible structures. Long-range research will emphasize development of human interfaces to permit a range of control modes from teleoperated to semiautonomous, and coordination of robot/astronaut and multiple-robot teams
    • …
    corecore