3,455 research outputs found

    Tight Upper and Lower Bounds to the Information Rate of the Phase Noise Channel

    Full text link
    Numerical upper and lower bounds to the information rate transferred through the additive white Gaussian noise channel affected by discrete-time multiplicative autoregressive moving-average (ARMA) phase noise are proposed in the paper. The state space of the ARMA model being multidimensional, the problem cannot be approached by the conventional trellis-based methods that assume a first-order model for phase noise and quantization of the phase space, because the number of state of the trellis would be enormous. The proposed lower and upper bounds are based on particle filtering and Kalman filtering. Simulation results show that the upper and lower bounds are so close to each other that we can claim of having numerically computed the actual information rate of the multiplicative ARMA phase noise channel, at least in the cases studied in the paper. Moreover, the lower bound, which is virtually capacity-achieving, is obtained by demodulation of the incoming signal based on a Kalman filter aided by past data. Thus we can claim of having found the virtually optimal demodulator for the multiplicative phase noise channel, at least for the cases considered in the paper.Comment: 5 pages, 2 figures. Accepted for presentation at ISIT 201

    Closed-Loop Control of a Piezo-Fluidic Amplifier

    Full text link
    Fluidic valves based on the Coand\u{a} effect are increasingly being considered for use in aerodynamic flow control applications. A limiting factor is their variation in switching time, which often precludes their use. The purpose of this paper is to demonstrate the closed-loop control of a recently developed, novel piezo-fluidic valve that reduces response time uncertainty at the expense of operating bandwidth. Use is made of the fact that a fluidic jet responds to a piezo tone by deflecting away from its steady state position. A control signal used to vary this deflection is amplitude modulated onto the piezo tone. Using only a pressure measurement from one of the device output channels, an output-based LQG regulator was designed to follow a desired reference deflection, achieving control of a 90 m/s jet. Finally, the controller's performance in terms of disturbance rejection and response time predictability is demonstrated.Comment: 31 pages, 23 figures. Published in AIAA Journal, 4th May 202

    Applications of Kalman Filters for Coherent Optical Communication Systems

    Get PDF
    In this chapter, we review various applications of Kalman filtering for coherent optical communication systems. First, we briefly discuss the principles of Kalman filter and its variations including extended Kalman filter (EKF) and adaptive Kalman filter (AKF). Later on, we illustrate the applicability of Kalman filters for joint tracking of several optical transmission impairments, simultaneously, by formulating the state space model (SSM) and detailing the principles. A detailed methodology is presented for the joint tracking of linear and nonlinear phase noise along with amplitude noise using EKF. Also, approaches to enhance the performance obtained by EKF by combining with other existing digital signal processing (DSP) techniques are presented. Frequency and phase offset estimation using a two stage linear Kalman filter (LKF)/EKF is also discussed. A cascaded structure of LKF and EKF by splitting the SSM to jointly mitigate the effects of polarization, phase and amplitude noise is also presented. The numerical analysis concludes that the Kalman filter based approaches outperform the conventional methods with better tracking capability and faster convergence besides offering more feasibility for real-time implementations

    Validation on flight data of a closed-loop approach for GPS-based relative navigation of LEO satellites

    Get PDF
    This paper describes a carrier-phase differential GPS approach for real-time relative navigation of LEO satellites flying in formation with large separations. These applications are characterized indeed by a highly varying number of GPS satellites in common view and large ionospheric differential errors, which significantly impact relative navigation performance and robustness. To achieve high relative positioning accuracy a navigation algorithm is proposed which processes double-difference code and carrier measurements on two frequencies, to fully exploit the integer nature of the related ambiguities. Specifically, a closed-loop scheme is proposed in which fixed estimates of the baseline and integer ambiguities produced by means of a partial integer fixing step are fed back to an Extended Kalman Filter for improving the float estimate at successive time instants. The approach also benefits from the inclusion in the filter state of the differential ionospheric delay in terms of the Vertical Total Electron Content of each satellite. The navigation algorithm performance is tested on actual flight data from GRACE mission. Results demonstrate the effectiveness of the proposed approach in managing integer unknowns in conjunction with Extended Kalman Filtering, and that centimeter-level accuracy can be achieved in real-time also with large separations. (c) 2013 IAA. Published by Elsevier Ltd. All rights reserved

    Software Defined Radio Implementation of Carrier and Timing Synchronization for Distributed Arrays

    Full text link
    The communication range of wireless networks can be greatly improved by using distributed beamforming from a set of independent radio nodes. One of the key challenges in establishing a beamformed communication link from separate radios is achieving carrier frequency and sample timing synchronization. This paper describes an implementation that addresses both carrier frequency and sample timing synchronization simultaneously using RF signaling between designated master and slave nodes. By using a pilot signal transmitted by the master node, each slave estimates and tracks the frequency and timing offset and digitally compensates for them. A real-time implementation of the proposed system was developed in GNU Radio and tested with Ettus USRP N210 software defined radios. The measurements show that the distributed array can reach a residual frequency error of 5 Hz and a residual timing offset of 1/16 the sample duration for 70 percent of the time. This performance enables distributed beamforming for range extension applications.Comment: Submitted to 2019 IEEE Aerospace Conferenc

    An extended kalman filter framework for joint phase noise, CFO and sampling time error estimation

    Get PDF
    We present a framework for joint estimation and compensation of three major oscillator impairments, namely sampling time error (STE), carrier frequency offset (CFO) and phase noise (PN). In particular, we model these impairments as Wiener processes and introduce a pilot-aided approach which facilitates their joint estimation. The proposed solution is carried out in two steps: first, an initial estimation of the transmitted symbols is acquired by applying an extended Kalman filter (EKF) on the pilot symbols and then, a second EKF is applied on the estimated symbols which yields an accurate tracking of STE, PN and CFO over an additive white Gaussian noise channel. Our numerical results demonstrate the efficacy of the proposed solution
    • …
    corecore