2,282 research outputs found

    A capsule network for traffic speed prediction in complex road networks

    Get PDF
    This paper proposes a deep learning approach for traffic flow prediction in complex road networks. Traffic flow data from induction loop sensors are essentially a time series, which is also spatially related to traffic in different road segments. The spatio-temporal traffic data can be converted into an image where the traffic data are expressed in a 3D space with respect to space and time axes. Although convolutional neural networks (CNNs) have been showing surprising performance in understanding images, they have a major drawback. In the max pooling operation, CNNs are losing important information by locally taking the highest activation values. The inter-relationship in traffic data measured by sparsely located sensors in different time intervals should not be neglected in order to obtain accurate predictions. Thus, we propose a neural network with capsules that replaces max pooling by dynamic routing. This is the first approach that employs the capsule network on a time series forecasting problem, to our best knowledge. Moreover, an experiment on real traffic speed data measured in the Santander city of Spain demonstrates the proposed method outperforms the state-of-the-art method based on a CNN by 13.1% in terms of root mean squared error

    The Multi-Lane Capsule Network (MLCN)

    Full text link
    We introduce Multi-Lane Capsule Networks (MLCN), which are a separable and resource efficient organization of Capsule Networks (CapsNet) that allows parallel processing, while achieving high accuracy at reduced cost. A MLCN is composed of a number of (distinct) parallel lanes, each contributing to a dimension of the result, trained using the routing-by-agreement organization of CapsNet. Our results indicate similar accuracy with a much reduced cost in number of parameters for the Fashion-MNIST and Cifar10 datsets. They also indicate that the MLCN outperforms the original CapsNet when using a proposed novel configuration for the lanes. MLCN also has faster training and inference times, being more than two-fold faster than the original CapsNet in the same accelerator

    Towards interactive betweenness centrality estimation for transportation network using capsule network

    Get PDF
    Includes bibliographical references.2022 Fall.The node importance of a graph needs to be estimated for many graph-based applications. One of the most popular metrics for measuring node importance is betweenness centrality, which measures the amount of influence a node has over the flow of information in a graph. However, the computation complexity of calculating betweenness centrality is extremely high with large- scale graphs. This is especially true when analyzing the road networks of states with millions of nodes and edges, making it infeasible to calculate their betweenness centrality (BC) in real- time using traditional iterative methods. The application of a machine learning model to predict the importance of nodes provides opportunities to address this issue. Graph Neural Networks (GNNs), which have been gaining popularity in recent years, are particularly well-suited for graph analysis. In this study, we propose a deep learning architecture RoadCaps to estimate the BC by merging Capsule Neural Networks with Graph Convolutional Networks (GCN), a convolution operation based GNN. We target the effective aggregation of features from neighbor nodes to approximate the correct BC of a node. We leverage patterns capturing the strength of the capsule network to effectively estimate the node level BC from the high-level information generated by the GCN block. We further compare the model accuracy and effectiveness of RoadCaps with the other two GCN-based models. We also analyze the efficiency and effectiveness of RoadCaps for different aspects like scalability and robustness. We perform one empirical benchmark with the road network for the entire state of California. The overall analysis shows that our proposed network can provide more accurate road importance estimation, which is helpful for rapid response planning such as evacuation during wildfires and flooding

    IEEE Access Special Section Editorial: Big Data Technology and Applications in Intelligent Transportation

    Get PDF
    During the last few years, information technology and transportation industries, along with automotive manufacturers and academia, are focusing on leveraging intelligent transportation systems (ITS) to improve services related to driver experience, connected cars, Internet data plans for vehicles, traffic infrastructure, urban transportation systems, traffic collaborative management, road traffic accidents analysis, road traffic flow prediction, public transportation service plan, personal travel route plans, and the development of an effective ecosystem for vehicles, drivers, traffic controllers, city planners, and transportation applications. Moreover, the emerging technologies of the Internet of Things (IoT) and cloud computing have provided unprecedented opportunities for the development and realization of innovative intelligent transportation systems where sensors and mobile devices can gather information and cloud computing, allowing knowledge discovery, information sharing, and supported decision making. However, the development of such data-driven ITS requires the integration, processing, and analysis of plentiful information obtained from millions of vehicles, traffic infrastructures, smartphones, and other collaborative systems like weather stations and road safety and early warning systems. The huge amount of data generated by ITS devices is only of value if utilized in data analytics for decision-making such as accident prevention and detection, controlling road risks, reducing traffic carbon emissions, and other applications which bring big data analytics into the picture

    Structural recurrent neural network for traffic speed prediction

    Get PDF
    Deep neural networks have recently demonstrated the traffic prediction capability with the time series data obtained by sensors mounted on road segments. However, capturing spatio-temporal features of the traffic data often requires a significant number of parameters to train, increasing compu- tational burden. In this work we demonstrate that embedding topological information of the road network improves the process of learning traffic features. We use a graph of a ve- hicular road network with recurrent neural networks (RNNs) to infer the interaction between adjacent road segments as well as the temporal dynamics. The topology of the road network is converted into a spatio-temporal graph to form a structural RNN (SRNN). The proposed approach is validated over traffic speed data from the road network of the city of Santander in Spain. The experiment shows that the graph- based method outperforms the state-of-the-art methods based on spatio-temporal images, requiring much fewer parameters to trai
    • …
    corecore