16,952 research outputs found

    Sequential Symbolic Regression with Genetic Programming

    Get PDF
    This chapter describes the Sequential Symbolic Regression (SSR) method, a new strategy for function approximation in symbolic regression. The SSR method is inspired by the sequential covering strategy from machine learning, but instead of sequentially reducing the size of the problem being solved, it sequentially transforms the original problem into potentially simpler problems. This transformation is performed according to the semantic distances between the desired and obtained outputs and a geometric semantic operator. The rationale behind SSR is that, after generating a suboptimal function f via symbolic regression, the output errors can be approximated by another function in a subsequent iteration. The method was tested in eight polynomial functions, and compared with canonical genetic programming (GP) and geometric semantic genetic programming (SGP). Results showed that SSR significantly outperforms SGP and presents no statistical difference to GP. More importantly, they show the potential of the proposed strategy: an effective way of applying geometric semantic operators to combine different (partial) solutions, avoiding the exponential growth problem arising from the use of these operators

    Evolving Takagi-Sugeno-Kang fuzzy systems using multi-population grammar guided genetic programming

    Get PDF
    This work proposes a novel approach for the automatic generation and tuning of complete Takagi-Sugeno-Kang fuzzy rule based systems. The examined system aims to explore the effects of a reduced search space for a genetic programming framework by means of grammar guidance that describes candidate structures of fuzzy rule based systems. The presented approach applies context-free grammars to generate individuals and evolve solutions through the search process of the algorithm. A multi-population approach is adopted for the genetic programming system, in order to increase the depth of the search process. Two candidate grammars are examined in one regression problem and one system identification task. Preliminary results are included and discussion proposes further research directions

    PonyGE2: Grammatical Evolution in Python

    Full text link
    Grammatical Evolution (GE) is a population-based evolutionary algorithm, where a formal grammar is used in the genotype to phenotype mapping process. PonyGE2 is an open source implementation of GE in Python, developed at UCD's Natural Computing Research and Applications group. It is intended as an advertisement and a starting-point for those new to GE, a reference for students and researchers, a rapid-prototyping medium for our own experiments, and a Python workout. As well as providing the characteristic genotype to phenotype mapping of GE, a search algorithm engine is also provided. A number of sample problems and tutorials on how to use and adapt PonyGE2 have been developed.Comment: 8 pages, 4 figures, submitted to the 2017 GECCO Workshop on Evolutionary Computation Software Systems (EvoSoft

    Multitask Evolution with Cartesian Genetic Programming

    Full text link
    We introduce a genetic programming method for solving multiple Boolean circuit synthesis tasks simultaneously. This allows us to solve a set of elementary logic functions twice as easily as with a direct, single-task approach.Comment: 2 page

    A Seeded Genetic Algorithm for RNA Secondary Structural Prediction with Pseudoknots

    Get PDF
    This work explores a new approach in using genetic algorithm to predict RNA secondary structures with pseudoknots. Since only a small portion of most RNA structures is comprised of pseudoknots, the majority of structural elements from an optimal pseudoknot-free structure are likely to be part of the true structure. Thus seeding the genetic algorithm with optimal pseudoknot-free structures will more likely lead it to the true structure than a randomly generated population. The genetic algorithm uses the known energy models with an additional augmentation to allow complex pseudoknots. The nearest-neighbor energy model is used in conjunction with Turner’s thermodynamic parameters for pseudoknot-free structures, and the H-type pseudoknot energy estimation for simple pseudoknots. Testing with known pseudoknot sequences from PseudoBase shows that it out performs some of the current popular algorithms
    corecore