10,350 research outputs found

    A Rational Deconstruction of Landin's SECD Machine with the J Operator

    Full text link
    Landin's SECD machine was the first abstract machine for applicative expressions, i.e., functional programs. Landin's J operator was the first control operator for functional languages, and was specified by an extension of the SECD machine. We present a family of evaluation functions corresponding to this extension of the SECD machine, using a series of elementary transformations (transformation into continu-ation-passing style (CPS) and defunctionalization, chiefly) and their left inverses (transformation into direct style and refunctionalization). To this end, we modernize the SECD machine into a bisimilar one that operates in lockstep with the original one but that (1) does not use a data stack and (2) uses the caller-save rather than the callee-save convention for environments. We also identify that the dump component of the SECD machine is managed in a callee-save way. The caller-save counterpart of the modernized SECD machine precisely corresponds to Thielecke's double-barrelled continuations and to Felleisen's encoding of J in terms of call/cc. We then variously characterize the J operator in terms of CPS and in terms of delimited-control operators in the CPS hierarchy. As a byproduct, we also present several reduction semantics for applicative expressions with the J operator, based on Curien's original calculus of explicit substitutions. These reduction semantics mechanically correspond to the modernized versions of the SECD machine and to the best of our knowledge, they provide the first syntactic theories of applicative expressions with the J operator

    Proving termination of evaluation for System F with control operators

    Full text link
    We present new proofs of termination of evaluation in reduction semantics (i.e., a small-step operational semantics with explicit representation of evaluation contexts) for System F with control operators. We introduce a modified version of Girard's proof method based on reducibility candidates, where the reducibility predicates are defined on values and on evaluation contexts as prescribed by the reduction semantics format. We address both abortive control operators (callcc) and delimited-control operators (shift and reset) for which we introduce novel polymorphic type systems, and we consider both the call-by-value and call-by-name evaluation strategies.Comment: In Proceedings COS 2013, arXiv:1309.092

    Logical relations for coherence of effect subtyping

    Full text link
    A coercion semantics of a programming language with subtyping is typically defined on typing derivations rather than on typing judgments. To avoid semantic ambiguity, such a semantics is expected to be coherent, i.e., independent of the typing derivation for a given typing judgment. In this article we present heterogeneous, biorthogonal, step-indexed logical relations for establishing the coherence of coercion semantics of programming languages with subtyping. To illustrate the effectiveness of the proof method, we develop a proof of coherence of a type-directed, selective CPS translation from a typed call-by-value lambda calculus with delimited continuations and control-effect subtyping. The article is accompanied by a Coq formalization that relies on a novel shallow embedding of a logic for reasoning about step-indexing

    Fire Plan: The Canadian Army’s Fire Support System in Normandy

    Get PDF
    Consigned initially to a decentralized and limited tactical role, the fire support organizations of British and Canadian armies experienced exponential growth during the initial stages of World War II. By D-Day, fire support had become a critical enabler of Anglo-Canadian combat operations and artillery units were numerous, networked, and efficient. Facilitating successful tactical manoeuvre was the goal of the fire support system. This article will explore the ‘ways’ and ‘means’ of that system – the people, procedures, resources, and organizations that combined to produce the devastating battle-winning fire support that contributed to tactical success

    An Operational Foundation for Delimited Continuations

    Get PDF
    We derive an abstract machine that corresponds to a definitional interpreter for the control operators shift and reset. Based on this abstract machine, we construct a syntactic theory of delimited continuations. Both the derivation and the construction scale to the family of control operators shift_n and reset_n. The definitional interpreter for shift_n and reset_n has n + 1 layers of continuations, the corresponding abstract machine has n + 1 layers of control stacks, and the corresponding syntactic theory has n + 1 layers of evaluation contexts.See also BRICS-RS-05-24

    An Analytical Approach to Programs as Data Objects

    Get PDF
    This essay accompanies a selection of 32 articles (referred to in bold face in the text and marginally marked in the bibliographic references) submitted to Aarhus University towards a Doctor Scientiarum degree in Computer Science.The author's previous academic degree, beyond a doctoral degree in June 1986, is an "Habilitation à diriger les recherches" from the Université Pierre et Marie Curie (Paris VI) in France; the corresponding material was submitted in September 1992 and the degree was obtained in January 1993.The present 32 articles have all been written since 1993 and while at DAIMI.Except for one other PhD student, all co-authors are or have been the author's students here in Aarhus
    • …
    corecore