3,250 research outputs found

    Parameterized Verification of Safety Properties in Ad Hoc Network Protocols

    Full text link
    We summarize the main results proved in recent work on the parameterized verification of safety properties for ad hoc network protocols. We consider a model in which the communication topology of a network is represented as a graph. Nodes represent states of individual processes. Adjacent nodes represent single-hop neighbors. Processes are finite state automata that communicate via selective broadcast messages. Reception of a broadcast is restricted to single-hop neighbors. For this model we consider a decision problem that can be expressed as the verification of the existence of an initial topology in which the execution of the protocol can lead to a configuration with at least one node in a certain state. The decision problem is parametric both on the size and on the form of the communication topology of the initial configurations. We draw a complete picture of the decidability and complexity boundaries of this problem according to various assumptions on the possible topologies.Comment: In Proceedings PACO 2011, arXiv:1108.145

    Modal logics are coalgebraic

    Get PDF
    Applications of modal logics are abundant in computer science, and a large number of structurally different modal logics have been successfully employed in a diverse spectrum of application contexts. Coalgebraic semantics, on the other hand, provides a uniform and encompassing view on the large variety of specific logics used in particular domains. The coalgebraic approach is generic and compositional: tools and techniques simultaneously apply to a large class of application areas and can moreover be combined in a modular way. In particular, this facilitates a pick-and-choose approach to domain specific formalisms, applicable across the entire scope of application areas, leading to generic software tools that are easier to design, to implement, and to maintain. This paper substantiates the authors' firm belief that the systematic exploitation of the coalgebraic nature of modal logic will not only have impact on the field of modal logic itself but also lead to significant progress in a number of areas within computer science, such as knowledge representation and concurrency/mobility

    Spatial Logics for Bigraphs

    No full text
    Bigraphs are emerging as an interesting model for concurrent calculi, like CCS, pi-calculus, and Petri nets. Bigraphs are built orthogonally on two structures: a hierarchical place graph for locations and a link (hyper-)graph for connections. With the aim of describing bigraphical structures, we introduce a general framework for logics whose terms represent arrows in monoidal categories. We then instantiate the framework to bigraphical structures and obtain a logic that is a natural composition of a place graph logic and a link graph logic. We explore the concepts of separation and sharing in these logics and we prove that they generalise some known spatial logics for trees, graphs and tree contexts

    Formal Models for Concurrent Communicating Systems

    Get PDF
    This report was originally written to fulfill in part the requirements of the author\u27s WPE examinations, part of the qualifying examinations for the University of Pennsylvania\u27a Computer Science Ph.D program. The report first introduces CCS and uses it to illustrate various features of established methods of modelling concurrent, communicating systems. The report then goes on to describe and investigate two new models for such systems: The Chemical Abstract Machine, a simple yet predominant in most models for such systems; and the π-calculus, a calculus similar in many respects to CCS, but able to model mobile processes and other, more difficult phenomena

    Distributed execution of bigraphical reactive systems

    Get PDF
    The bigraph embedding problem is crucial for many results and tools about bigraphs and bigraphical reactive systems (BRS). Current algorithms for computing bigraphical embeddings are centralized, i.e. designed to run locally with a complete view of the guest and host bigraphs. In order to deal with large bigraphs, and to parallelize reactions, we present a decentralized algorithm, which distributes both state and computation over several concurrent processes. This allows for distributed, parallel simulations where non-interfering reactions can be carried out concurrently; nevertheless, even in the worst case the complexity of this distributed algorithm is no worse than that of a centralized algorithm
    corecore