45 research outputs found

    Applications of PDEs inpainting to magnetic particle imaging and corneal topography

    Get PDF
    In this work we propose a novel application of Partial Differential Equations (PDEs) inpainting techniques to two medical contexts. The first one concerning recovering of concentration maps for superparamagnetic nanoparticles, used as tracers in the framework of Magnetic Particle Imaging. The analysis is carried out by two set of simulations, with and without adding a source of noise, to show that the inpainted images preserve the main properties of the original ones. The second medical application is related to recovering data of corneal elevation maps in ophthalmology. A new procedure consisting in applying the PDEs inpainting techniques to the radial curvature image is proposed. The images of the anterior corneal surface are properly recovered to obtain an approximation error of the required precision. We compare inpainting methods based on second, third and fourth-order PDEs with standard approximation and interpolation techniques

    Etude mathématique et numérique de quelques généralisations de l'équation de Cahn-Hilliard : Applications a la retouche d'images et a la biologie.

    Get PDF
    This thesis is situated in the context of the theoretical and numerical analysis of some generalizations of the Cahn–Hilliard equation. We study the well-possedness of these models, as well as the asymptotic behavior in terms of the existence of finite-dimenstional (in the sense of the fractal dimension) attractors. The first part of this thesis is devoted to some models which, in particular, have applications in image inpainting. We start by the study of the dynamics of the Bertozzi–Esedoglu–Gillette–Cahn–Hilliard equation with Neumann boundary conditions and a regular nonlinearity. We give numerical simulations with a fast numerical scheme with threshold which is sufficient to obtain good inpainting results. Furthermore, we study this model with Neumann boundary conditions and a logarithmic nonlinearity and we also give numerical simulations which confirm that the results obtained with a logarithmic non- linearity are better than the ones obtained with a polynomial nonlinearity. Finally, we propose a model based on the Cahn–Hilliard system which has applications in color image inpainting. The second part of this thesis is devoted to some models which, in particular, have applications in biologie and chemistry. We study the convergence of the solution of a Cahn–Hilliard equation with a proliferation term and associated with Neumann boundary conditions and a regular nonlinearity. In that case, we prove that the solutions blow up in finite time or exist globally in time. Furthermore, we give numericial simulations which confirm the theoritical results. We end with the study of the Cahn–Hilliard equation with a mass source and a regular nonlinearity. In this study, we consider both Neumann and Dirichlet boundary conditions.Cette thèse se situe dans le cadre de l’analyse théorique et numérique de quelques généralisations de l’équation de Cahn–Hilliard. On étudie l’existence, l’unicité et la régularité de la solution de ces modèles ainsi que son comportement asymptotique en terme d’existence d’un attracteur global de dimension fractale finie. La première partie de la thèse concerne des modèles appliqués à la retouche d’images. D’abord, on étudie la dynamique de l’équation de Bertozzi–Esedoglu–Gillette–Cahn–Hilliard avec des conditions de type Neumann sur le bord et une nonlinéarité régulière de type polynomial et on propose un schéma numérique avec une méthode de seuil efficace pour le problème de la retouche et très rapide en terme de temps de convergence. Ensuite, on étudie ce modèle avec des conditions de type Neumann sur le bord et une nonlinéarité singulière de type logarithmique et on donne des simulations numériques avec seuil qui confirment que les résultats obtenus avec une nonlinéarité de type logarithmique sont meilleurs que ceux obtenus avec une nonlinéarité de type polynomial. Finalement, on propose un modèle basé sur le système de Cahn–Hilliard pour la retouche d’images colorées. La deuxième partie de la thèse est consacrée à des applications en biologie et en chimie. On étudie la convergence de la solution d’une généralisation de l’équation de Cahn–Hilliard avec un terme de prolifération, associée à des conditions aux limites de type Neumann et une nonlinéarité régulière. Dans ce cas, on démontre que soit la solution explose en temps fini soit elle existe globalement en temps. Par ailleurs, on donne des simulations numériques qui confirment les résultats théoriques obtenus. On termine par l’étude de l’équation de Cahn–Hilliard avec un terme source et une nonlinéarité régulière. Dans cette étude, on considère le modèle à la fois avec des conditions aux limites de type Neumann et de type Dirichlet

    Multiclass Data Segmentation using Diffuse Interface Methods on Graphs

    Full text link
    We present two graph-based algorithms for multiclass segmentation of high-dimensional data. The algorithms use a diffuse interface model based on the Ginzburg-Landau functional, related to total variation compressed sensing and image processing. A multiclass extension is introduced using the Gibbs simplex, with the functional's double-well potential modified to handle the multiclass case. The first algorithm minimizes the functional using a convex splitting numerical scheme. The second algorithm is a uses a graph adaptation of the classical numerical Merriman-Bence-Osher (MBO) scheme, which alternates between diffusion and thresholding. We demonstrate the performance of both algorithms experimentally on synthetic data, grayscale and color images, and several benchmark data sets such as MNIST, COIL and WebKB. We also make use of fast numerical solvers for finding the eigenvectors and eigenvalues of the graph Laplacian, and take advantage of the sparsity of the matrix. Experiments indicate that the results are competitive with or better than the current state-of-the-art multiclass segmentation algorithms.Comment: 14 page

    Primal-dual active set methods for Allen-Cahn variational inequalities

    Get PDF
    This thesis aims to introduce and analyse a primal-dual active set strategy for solving Allen-Cahn variational inequalities. We consider the standard Allen-Cahn equation with non-local constraints and a vector-valued Allen-Cahn equation with and without non-local constraints. Existence and uniqueness results are derived in a formulation involving Lagrange multipliers for local and non-local constraints. Local Convergence is shown by interpreting the primal-dual active set approach as a semi-smooth Newton method. Properties of the method are discussed and several numerical simulations in two and three space dimensions demonstrate its efficiency. In the second part of the thesis various applications of the Allen-Cahn equation are discussed. The non-local Allen-Cahn equation can be coupled with an elasticity equation to solve problems in structural topology optimisation. The model can be extended to handle multiple structures by using the vector-valued Allen-Cahn variational inequality with non-local constraints. Since many applications of the Allen-Cahn equation involve evolution of interfaces in materials an important extension of the standard Allen-Cahn model is to allow materials to exhibit anisotropic behaviour. We introduce an anisotropic version of the Allen-Cahn variational inequality and we show that it is possible to apply the primal-dual active set strategy efficiently to this model. Finally, the Allen-Cahn model is applied to problems in image processing, such as segmentation, denoising and inpainting. The primal-dual active set method proves exible and reliable for all the applications considered in this thesis

    Modelling and numerical analysis of energy-dissipating systems with nonlocal free energy

    Get PDF
    The broad objective of this thesis is to design finite-volume schemes for a family of energy-dissipating systems. All the systems studied in this thesis share a common property: they are driven by an energy that decreases as the system evolves. Such decrease is produced by a dissipation mechanism, which ensures that the system eventually reaches a steady state where the energy is minimised. The numerical schemes presented here are designed to discretely preserve the dissipation of the energy, leading to more accurate and cost-effective simulations. Most of the material in this thesis is based on the publications [16, 54, 65, 66, 243]. The research content is structured in three parts. First, Part II presents well-balanced first-, second- and high-order finite-volume schemes for a general class of hydrodynamic systems with linear and nonlinear damping. These well-balanced schemes preserve stationary states at machine precision, while discretely preserving the dissipation of the discrete free energy for first- and second-order accuracy. Second, Part III focuses on finite-volume schemes for the Cahn-Hilliard equation that unconditionally and discretely satisfy the boundedness of the phase eld and the free-energy dissipation. In addition, our Cahn-Hilliard scheme is employed as an image inpainting filter before passing damaged images into a classification neural network, leading to a significant improvement of damaged-image prediction. Third, Part IV introduces nite-volume schemes to solve stochastic gradient-flow equations. Such equations are of crucial importance within the framework of fluctuating hydrodynamics and dynamic density functional theory. The main advantages of these schemes are the preservation of non-negative densities in the presence of noise and the accurate reproduction of the statistical properties of the physical systems. All these fi nite-volume schemes are complemented with prototypical examples from relevant applications, which highlight the bene fit of our algorithms to elucidate some of the unknown analytical results.Open Acces

    Generalizing diffuse interface methods on graphs: non-smooth potentials and hypergraphs

    No full text
    corecore