254 research outputs found

    Relational Parametricity and Control

    Full text link
    We study the equational theory of Parigot's second-order λμ-calculus in connection with a call-by-name continuation-passing style (CPS) translation into a fragment of the second-order λ-calculus. It is observed that the relational parametricity on the target calculus induces a natural notion of equivalence on the λμ-terms. On the other hand, the unconstrained relational parametricity on the λμ-calculus turns out to be inconsistent with this CPS semantics. Following these facts, we propose to formulate the relational parametricity on the λμ-calculus in a constrained way, which might be called ``focal parametricity''.Comment: 22 pages, for Logical Methods in Computer Scienc

    An estimation for the lengths of reduction sequences of the λμρθ\lambda\mu\rho\theta-calculus

    Full text link
    Since it was realized that the Curry-Howard isomorphism can be extended to the case of classical logic as well, several calculi have appeared as candidates for the encodings of proofs in classical logic. One of the most extensively studied among them is the λμ\lambda\mu-calculus of Parigot. In this paper, based on the result of Xi presented for the λ\lambda-calculus Xi, we give an upper bound for the lengths of the reduction sequences in the λμ\lambda\mu-calculus extended with the ρ\rho- and θ\theta-rules. Surprisingly, our results show that the new terms and the new rules do not add to the computational complexity of the calculus despite the fact that μ\mu-abstraction is able to consume an unbounded number of arguments by virtue of the μ\mu-rule

    Logical relations for coherence of effect subtyping

    Full text link
    A coercion semantics of a programming language with subtyping is typically defined on typing derivations rather than on typing judgments. To avoid semantic ambiguity, such a semantics is expected to be coherent, i.e., independent of the typing derivation for a given typing judgment. In this article we present heterogeneous, biorthogonal, step-indexed logical relations for establishing the coherence of coercion semantics of programming languages with subtyping. To illustrate the effectiveness of the proof method, we develop a proof of coherence of a type-directed, selective CPS translation from a typed call-by-value lambda calculus with delimited continuations and control-effect subtyping. The article is accompanied by a Coq formalization that relies on a novel shallow embedding of a logic for reasoning about step-indexing
    corecore