135 research outputs found

    Robust network design under polyhedral traffic uncertainty

    Get PDF
    Ankara : The Department of Industrial Engineering and The Institute of Engineering and Science of Bilkent Univ., 2007.Thesis (Ph.D.) -- Bilkent University, 2007.Includes bibliographical references leaves 160-166.In this thesis, we study the design of networks robust to changes in demand estimates. We consider the case where the set of feasible demands is defined by an arbitrary polyhedron. Our motivation is to determine link capacity or routing configurations, which remain feasible for any realization in the corresponding demand polyhedron. We consider three well-known problems under polyhedral demand uncertainty all of which are posed as semi-infinite mixed integer programming problems. We develop explicit, compact formulations for all three problems as well as alternative formulations and exact solution methods. The first problem arises in the Virtual Private Network (VPN) design field. We present compact linear mixed-integer programming formulations for the problem with the classical hose traffic model and for a new, less conservative, robust variant relying on accessible traffic statistics. Although we can solve these formulations for medium-to-large instances in reasonable times using off-the-shelf MIP solvers, we develop a combined branch-and-price and cutting plane algorithm to handle larger instances. We also provide an extensive discussion of our numerical results. Next, we study the Open Shortest Path First (OSPF) routing enhanced with traffic engineering tools under general demand uncertainty with the motivation to discuss if OSPF could be made comparable to the general unconstrained routing (MPLS) when it is provided with a less restrictive operating environment. To the best of our knowledge, these two routing mechanisms are compared for the first time under such a general setting. We provide compact formulations for both routing types and show that MPLS routing for polyhedral demands can be computed in polynomial time. Moreover, we present a specialized branchand-price algorithm strengthened with the inclusion of cuts as an exact solution tool. Subsequently, we compare the new and more flexible OSPF routing with MPLS as well as the traditional OSPF on several network instances. We observe that the management tools we use in OSPF make it significantly better than the generic OSPF. Moreover, we show that OSPF performance can get closer to that of MPLS in some cases. Finally, we consider the Network Loading Problem (NLP) under a polyhedral uncertainty description of traffic demands. After giving a compact multicommodity formulation of the problem, we prove an unexpected decomposition property obtained from projecting out the flow variables, considerably simplifying the resulting polyhedral analysis and computations by doing away with metric inequalities, an attendant feature of most successful algorithms on NLP. Under the hose model of feasible demands, we study the polyhedral aspects of NLP, used as the basis of an efficient branch-and-cut algorithm supported by a simple heuristic for generating upper bounds. We provide the results of extensive computational experiments on well-known network design instances.Altın, AyşegülPh.D

    Multi-path BGP: motivations and solutions

    Get PDF
    Although there are many reasons towards the adoption of a multi-path routing paradigm in the Internet, nowadays the required multi-path support is far from universal. It is mostly limited to some domains that rely on IGP features to improve load distribution in their internal infrastructure or some multi-homed parties that base their load balance on traffic engineering. This chapter explains the motivations for a multi-path routing Internet scheme, commenting the existing alternatives and detailing two new proposals. Part of this work has been done within the framework of the Trilogy research and development project, whose main objectives are also commented in the chapter.Part of this work has been done within the framework of the Trilogy research and development project. The different research partners of this project are: British Telecom, Deutsche Telekom, NEC Europe, Nokia, Roke Manor Research Limited, Athens University of Economics and Business, University Carlos III of Madrid, University College London, Universit Catholique de Louvain and Stanford University.European Community's Seventh Framework ProgramEn prens

    Let there be Chaining: How to Augment your IGP to Chain your Services

    Get PDF
    Ever since Network Functions Virtualization has replaced dedicated appliances, ISPs have been able to add a degree of flexibility in their traffic engineering. However, it also has increased the complexity of the optimization problem, because it is now necessary to place virtual functions and route traffic jointly. Insofar, a logically centralized approach has been taken, where a so-called orchestrator, having full knowledge of the network, the virtual functions, and the traffic, run complex algorithms to find a suitable solution to the problem. The outcome of the algorithms are then translated to network configurations to be pushed to all of the appliances. We argue that there is no need to fully centralize every decision, rather we can leverage existing network intelligence to achieve the same goal. In particular we propose to augment the routing layer with the notion of services, so to rely on the robustness and scalability of Interior Gateway Protocols (IGP). Our solution leverages on existing distributed routing protocols where, in addition, autonomous nodes announce information about the virtual services they provide. Our design is modular and incrementally deployable and has been implemented in what we call a NFV Router. In our evaluation, we show that (i) NFV Routers distributed chaining decisions are close to optimal centrally-computed paths, (ii) on a large scale testbed deployment, NFV Routers efficiently steer traffic through chains and only add a small overhead to control traffic and (iii) our distributed system, because of its local control loop, has a faster reaction to network events than centralized solutions

    An overview of Stackelberg pricing in networks

    Get PDF
    The Stackelberg pricing problem has two levels of decision making: tariff setting by an operator, and then selection of the cheapest alternative by customers. In the network version, an operator determines tariffs on a subset of the arcs that he owns. Customers, who wish to connect two vertices with a path of a certain capacity, select the cheapest path. The revenue for the operator is determined by the tariff and the amount of usage of his arcs. The most natural model for the problem is a (bi-linear) bilevel program, where the upper level problem is the pricing problem of the operator, and the lower level problem is a shortest path problem for each of the customers. This manuscript contains a compilation of theoretical and algorithmic results on the Stackelberg pricing problem. The description of the theory and algorithms is generally informal and intuitive. We redefine the underlying network of the problem, to obtain a compact representation. Then, we describe a basic branch-and-bound enumeration procedure. Both concepts are used for complexity issues and the development of algorithms: establishing NP-hardness, approximability, and polynomially solvable cases, and an efficient exact branch-and-bound algorithm.mathematical applications;

    Intelligent Network Infrastructures: New Functional Perspectives on Leveraging Future Internet Services

    Get PDF
    The Internet experience of the 21st century is by far very different from that of the early '80s. The Internet has adapted itself to become what it really is today, a very successful business platform of global scale. As every highly successful technology, the Internet has suffered from a natural process of ossification. Over the last 30 years, the technical solutions adopted to leverage emerging applications can be divided in two categories. First, the addition of new functionalities either patching existing protocols or adding new upper layers. Second, accommodating traffic grow with higher bandwidth links. Unfortunately, this approach is not suitable to provide the proper ground for a wide gamma of new applications. To be deployed, these future Internet applications require from the network layer advanced capabilities that the TCP/IP stack and its derived protocols can not provide by design in a robust, scalable fashion. NGNs (Next Generation Networks) on top of intelligent telecommunication infrastructures are being envisioned to support future Internet Services. This thesis contributes with three proposals to achieve this ambitious goal. The first proposal presents a preliminary architecture to allow NGNs to seamlessly request advanced services from layer 1 transport networks, such as QoS guaranteed point-to-multipoint circuits. This architecture is based on virtualization techniques applied to layer 1 networks, and hides from NGNs all complexities of interdomain provisioning. Moreover, the economic aspects involved were also considered, making the architecture attractive to carriers. The second contribution regards a framework to develop DiffServ-MPLS capable networks based exclusively on open source software and commodity PCs. The developed DiffServ-MPLS flexible software router was designed to allow NGN prototyping, that make use of pseudo virtual circuits and assured QoS as a starting point of development. The third proposal presents a state of the art routing and wavelength assignment algorithm for photonic networks. This algorithm considers physical layer impairments to 100% guarantee the requested QoS profile, even in case of single network failures. A number of novel techniques were applied to offer lower blocking probability when compared with recent proposed algorithms, without impacting on setup delay time

    GMPLS-OBS interoperability and routing acalability in internet

    Get PDF
    The popularization of Internet has turned the telecom world upside down over the last two decades. Network operators, vendors and service providers are being challenged to adapt themselves to Internet requirements in a way to properly serve the huge number of demanding users (residential and business). The Internet (data-oriented network) is supported by an IP packet-switched architecture on top of a circuit-switched, optical-based architecture (voice-oriented network), which results in a complex and rather costly infrastructure to the transport of IP traffic (the dominant traffic nowadays). In such a way, a simple and IP-adapted network architecture is desired. From the transport network perspective, both Generalized Multi-Protocol Label Switching (GMPLS) and Optical Burst Switching (OBS) technologies are part of the set of solutions to progress towards an IP-over-WDM architecture, providing intelligence in the control and management of resources (i.e. GMPLS) as well as a good network resource access and usage (i.e. OBS). The GMPLS framework is the key enabler to orchestrate a unified optical network control and thus reduce network operational expenses (OPEX), while increasing operator's revenues. Simultaneously, the OBS technology is one of the well positioned switching technologies to realize the envisioned IP-over-WDM network architecture, leveraging on the statistical multiplexing of data plane resources to enable sub-wavelength in optical networks. Despite of the GMPLS principle of unified control, little effort has been put on extending it to incorporate the OBS technology and many open questions still remain. From the IP network perspective, the Internet is facing scalability issues as enormous quantities of service instances and devices must be managed. Nowadays, it is believed that the current Internet features and mechanisms cannot cope with the size and dynamics of the Future Internet. Compact Routing is one of the main breakthrough paradigms on the design of a routing system scalable with the Future Internet requirements. It intends to address the fundamental limits of current stretch-1 shortest-path routing in terms of RT scalability (aiming at sub-linear growth). Although "static" compact routing works fine, scaling logarithmically on the number of nodes even in scale-free graphs such as Internet, it does not handle dynamic graphs. Moreover, as multimedia content/services proliferate, the multicast is again under the spotlight as bandwidth efficiency and low RT sizes are desired. However, it makes the problem even worse as more routing entries should be maintained. In a nutshell, the main objective of this thesis in to contribute with fully detailed solutions dealing both with i) GMPLS-OBS control interoperability (Part I), fostering unified control over multiple switching domains and reduce redundancy in IP transport. The proposed solution overcomes every interoperability technology-specific issue as well as it offers (absolute) QoS guarantees overcoming OBS performance issues by making use of the GMPLS traffic-engineering (TE) features. Keys extensions to the GMPLS protocol standards are equally approached; and ii) new compact routing scheme for multicast scenarios, in order to overcome the Future Internet inter-domain routing system scalability problem (Part II). In such a way, the first known name-independent (i.e. topology unaware) compact multicast routing algorithm is proposed. On the other hand, the AnyTraffic Labeled concept is also introduced saving on forwarding entries by sharing a single forwarding entry to unicast and multicast traffic type. Exhaustive simulation campaigns are run in both cases in order to assess the reliability and feasible of the proposals
    corecore