130 research outputs found

    Ultrasound based Silent Speech Interface using Deep Learning

    Get PDF
    Silent Speech Interface (SSI) is a technology able to synthesize speech in the absence of any acoustic signal. It can be useful in cases like laryngectomy patients, noisy environments or silent calls. This thesis explores the particular case of SSI using ultrasound images of the tongue as input signals. A 'direct synthesis' approach based on Deep Neural Networks and Mel-generalized cepstral coefficients is proposed. This document is an extension of Csapó et al. "DNN-based Ultrasound-to-Speech Conversion for a Silent Speech Interface". Several deep learning models, such as the basic Feed-forward Neural Networks, Convolutional Neural Networks and Recurrent Neural Networks are presented and discussed. A denoising pre-processing based on a Deep Convolutional Autoencoder has also been studied. A considerable number of experiments using a set of different deep learning architectures and an extensive hyperperameter optimization study have been realized. The different experiments have been testing and rating several objective and subjective quality measures. According to the experiments, an architecture based on a CNN and bidirectional LSTM layers has shown the best results in both objective and subjective terms.Silent Speech Interface (SSI) is a technology able to synthesize speech in the absence of any acoustic signal. It can be useful in cases like laryngectomy patients, noisy environments or silent calls. This thesis explores the particular case of SSI using ultrasound images of the tongue as input signals. A 'direct synthesis' approach based on Deep Neural Networks and Mel-generalized cepstral coefficients is proposed. This document is an extension of Csapó et al. "DNN-based Ultrasound-to-Speech Conversion for a Silent Speech Interface". Several deep learning models, such as the basic Feed-forward Neural Networks, Convolutional Neural Networks and Recurrent Neural Networks are presented and discussed. A denoising pre-processing based on a Deep Convolutional Autoencoder has also been studied. A considerable number of experiments using a set of different deep learning architectures and an extensive hyperperameter optimization study have been realized. The different experiments have been testing and rating several objective and subjective quality measures. According to the experiments, an architecture based on a CNN and bidirectional LSTM layers has shown the best results in both objective and subjective terms.Silent Speech Interface (SSI) és una tecnologia capaç de sintetitzar veu partint únicament de senyals no-acústiques. Pot tenir gran utilitat en casos com pacients de laringectomia, ambients sorollosos o trucades silencioses. Aquesta tèsis explora el cas particular de SSI utilitzant imatges de la llengua captades amb ultrasons com a senyals d'entrada. Es proposa un enfocament de 'síntesis directa' basat en Xarxes Neuronals Profundes i coeficients Mel-generalized cepstral. Aquest document és una extensió del treball de Csapó et al. "DNN-based Ultrasound-to-Speech Conversion for a Silent Speech Interface" . Diversos models de xarxes neuronals són presentats i discutits, com les bàsiques xarxes neuronals directes, xarxes neuronals convolucionals o xarxes neuronals recurrents. També s'ha estudiat un pre-processat reductor de soroll basat en un Autoencoder convolucional profund. S'ha portat a terme un nombre considerable d'experiments utilitzant diverses arquitectures de Deep Learning, així com un extens estudi d'optimització d'hyperparàmetres. Els diferents experiments han estat evaluar i qualificar a partir de diferentes mesures de qualitat objectives i subjectives. Els millors resultats, tant en termes objectius com subjectius, els ha presentat una arquitectura basada en una CNN i capes bidireccionals de LSTMs

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Towards Automatic Speech Identification from Vocal Tract Shape Dynamics in Real-time MRI

    Full text link
    Vocal tract configurations play a vital role in generating distinguishable speech sounds, by modulating the airflow and creating different resonant cavities in speech production. They contain abundant information that can be utilized to better understand the underlying speech production mechanism. As a step towards automatic mapping of vocal tract shape geometry to acoustics, this paper employs effective video action recognition techniques, like Long-term Recurrent Convolutional Networks (LRCN) models, to identify different vowel-consonant-vowel (VCV) sequences from dynamic shaping of the vocal tract. Such a model typically combines a CNN based deep hierarchical visual feature extractor with Recurrent Networks, that ideally makes the network spatio-temporally deep enough to learn the sequential dynamics of a short video clip for video classification tasks. We use a database consisting of 2D real-time MRI of vocal tract shaping during VCV utterances by 17 speakers. The comparative performances of this class of algorithms under various parameter settings and for various classification tasks are discussed. Interestingly, the results show a marked difference in the model performance in the context of speech classification with respect to generic sequence or video classification tasks.Comment: To appear in the INTERSPEECH 2018 Proceeding

    Beyond the edge: Markerless pose estimation of speech articulators from ultrasound and camera images using DeepLabCut

    Get PDF
    Automatic feature extraction from images of speech articulators is currently achieved by detecting edges. Here, we investigate the use of pose estimation deep neural nets with transfer learning to perform markerless estimation of speech articulator keypoints using only a few hundred hand-labelled images as training input. Midsagittal ultrasound images of the tongue, jaw, and hyoid and camera images of the lips were hand-labelled with keypoints, trained using DeepLabCut and evaluated on unseen speakers and systems. Tongue surface contours interpolated from estimated and hand-labelled keypoints produced an average mean sum of distances (MSD) of 0.93, s.d. 0.46 mm, compared with 0.96, s.d. 0.39 mm, for two human labellers, and 2.3, s.d. 1.5 mm, for the best performing edge detection algorithm. A pilot set of simultaneous electromagnetic articulography (EMA) and ultrasound recordings demonstrated partial correlation among three physical sensor positions and the corresponding estimated keypoints and requires further investigation. The accuracy of the estimating lip aperture from a camera video was high, with a mean MSD of 0.70, s.d. 0.56, mm compared with 0.57, s.d. 0.48 mm for two human labellers. DeepLabCut was found to be a fast, accurate and fully automatic method of providing unique kinematic data for tongue, hyoid, jaw, and lips.https://doi.org/10.3390/s2203113322pubpub
    corecore