569 research outputs found

    A Machine Learning Approach for Intrusion Detection

    Get PDF
    Master's thesis in Information- and communication technology (IKT590)Securing networks and their confidentiality from intrusions is crucial, and for this rea-son, Intrusion Detection Systems have to be employed. The main goal of this thesis is to achieve a proper detection performance of a Network Intrusion Detection System (NIDS). In this thesis, we have examined the detection efficiency of machine learning algorithms such as Neural Network, Convolutional Neural Network, Random Forestand Long Short-Term Memory. We have constructed our models so that they can detect different types of attacks utilizing the CICIDS2017 dataset. We have worked on identifying 15 various attacks present in CICIDS2017, instead of merely identifying normal-abnormal traffic. We have also discussed the reason why to use precisely this dataset, and why should one classify by attack to enhance the detection. Previous works based on benchmark datasets such as NSL-KDD and KDD99 are discussed. Also, how to address and solve these issues. The thesis also shows how the results are effected using different machine learning algorithms. As the research will demon-strate, the Neural Network, Convulotional Neural Network, Random Forest and Long Short-Term Memory are evaluated by conducting cross validation; the average score across five folds of each model is at 92.30%, 87.73%, 94.42% and 87.94%, respectively. Nevertheless, the confusion metrics was also a crucial measurement to evaluate the models, as we shall see. Keywords: Information security, NIDS, Machine Learning, Neural Network, Convolutional Neural Network, Random Forest, Long Short-Term Memory, CICIDS2017

    A survey on the application of deep learning for code injection detection

    Get PDF
    Abstract Code injection is one of the top cyber security attack vectors in the modern world. To overcome the limitations of conventional signature-based detection techniques, and to complement them when appropriate, multiple machine learning approaches have been proposed. While analysing these approaches, the surveys focus predominantly on the general intrusion detection, which can be further applied to specific vulnerabilities. In addition, among the machine learning steps, data preprocessing, being highly critical in the data analysis process, appears to be the least researched in the context of Network Intrusion Detection, namely in code injection. The goal of this survey is to fill in the gap through analysing and classifying the existing machine learning techniques applied to the code injection attack detection, with special attention to Deep Learning. Our analysis reveals that the way the input data is preprocessed considerably impacts the performance and attack detection rate. The proposed full preprocessing cycle demonstrates how various machine-learning-based approaches for detection of code injection attacks take advantage of different input data preprocessing techniques. The most used machine learning methods and preprocessing stages have been also identified

    Advanced Topics in Systems Safety and Security

    Get PDF
    This book presents valuable research results in the challenging field of systems (cyber)security. It is a reprint of the Information (MDPI, Basel) - Special Issue (SI) on Advanced Topics in Systems Safety and Security. The competitive review process of MDPI journals guarantees the quality of the presented concepts and results. The SI comprises high-quality papers focused on cutting-edge research topics in cybersecurity of computer networks and industrial control systems. The contributions presented in this book are mainly the extended versions of selected papers presented at the 7th and the 8th editions of the International Workshop on Systems Safety and Security—IWSSS. These two editions took place in Romania in 2019 and respectively in 2020. In addition to the selected papers from IWSSS, the special issue includes other valuable and relevant contributions. The papers included in this reprint discuss various subjects ranging from cyberattack or criminal activities detection, evaluation of the attacker skills, modeling of the cyber-attacks, and mobile application security evaluation. Given this diversity of topics and the scientific level of papers, we consider this book a valuable reference for researchers in the security and safety of systems

    Shielding against Web Application Attacks - Detection Techniques and Classification

    Get PDF
    The field of IoT web applications is facing a range of security risks and system attacks due to the increasing complexity and size of home automation datasets. One of the primary concerns is the identification of Distributed Denial of Service (DDoS) attacks in home automation systems. Attackers can easily access various IoT web application assets by entering a home automation dataset or clicking a link, making them vulnerable to different types of web attacks. To address these challenges, the cloud has introduced the Edge of Things paradigm, which uses multiple concurrent deep models to enhance system stability and enable easy data revelation updates. Therefore, identifying malicious attacks is crucial for improving the reliability and security of IoT web applications. This paper uses a Machine Learning algorithm that can accurately identify web attacks using unique keywords. Smart home devices are classified into four classes based on their traffic predictability levels, and a neural system recognition model is proposed to classify these attacks with a high degree of accuracy, outperforming other classification models. The application of deep learning in identifying and classifying attacks has significant theoretical and scientific value for web security investigations. It also provides innovative ideas for intelligent security detection by classifying web visitors, making it possible to identify and prevent potential security threats

    Adversarial ModSecurity: Countering Adversarial SQL Injections with Robust Machine Learning

    Full text link
    ModSecurity is widely recognized as the standard open-source Web Application Firewall (WAF), maintained by the OWASP Foundation. It detects malicious requests by matching them against the Core Rule Set, identifying well-known attack patterns. Each rule in the CRS is manually assigned a weight, based on the severity of the corresponding attack, and a request is detected as malicious if the sum of the weights of the firing rules exceeds a given threshold. In this work, we show that this simple strategy is largely ineffective for detecting SQL injection (SQLi) attacks, as it tends to block many legitimate requests, while also being vulnerable to adversarial SQLi attacks, i.e., attacks intentionally manipulated to evade detection. To overcome these issues, we design a robust machine learning model, named AdvModSec, which uses the CRS rules as input features, and it is trained to detect adversarial SQLi attacks. Our experiments show that AdvModSec, being trained on the traffic directed towards the protected web services, achieves a better trade-off between detection and false positive rates, improving the detection rate of the vanilla version of ModSecurity with CRS by 21%. Moreover, our approach is able to improve its adversarial robustness against adversarial SQLi attacks by 42%, thereby taking a step forward towards building more robust and trustworthy WAFs
    • …
    corecore