876 research outputs found

    Leveraging Deep Learning and Online Source Sentiment for Financial Portfolio Management

    Full text link
    Financial portfolio management describes the task of distributing funds and conducting trading operations on a set of financial assets, such as stocks, index funds, foreign exchange or cryptocurrencies, aiming to maximize the profit while minimizing the loss incurred by said operations. Deep Learning (DL) methods have been consistently excelling at various tasks and automated financial trading is one of the most complex one of those. This paper aims to provide insight into various DL methods for financial trading, under both the supervised and reinforcement learning schemes. At the same time, taking into consideration sentiment information regarding the traded assets, we discuss and demonstrate their usefulness through corresponding research studies. Finally, we discuss commonly found problems in training such financial agents and equip the reader with the necessary knowledge to avoid these problems and apply the discussed methods in practice

    Predicting Paid Certification in Massive Open Online Courses

    Get PDF
    Massive open online courses (MOOCs) have been proliferating because of the free or low-cost offering of content for learners, attracting the attention of many stakeholders across the entire educational landscape. Since 2012, coined as “the Year of the MOOCs”, several platforms have gathered millions of learners in just a decade. Nevertheless, the certification rate of both free and paid courses has been low, and only about 4.5–13% and 1–3%, respectively, of the total number of enrolled learners obtain a certificate at the end of their courses. Still, most research concentrates on completion, ignoring the certification problem, and especially its financial aspects. Thus, the research described in the present thesis aimed to investigate paid certification in MOOCs, for the first time, in a comprehensive way, and as early as the first week of the course, by exploring its various levels. First, the latent correlation between learner activities and their paid certification decisions was examined by (1) statistically comparing the activities of non-paying learners with course purchasers and (2) predicting paid certification using different machine learning (ML) techniques. Our temporal (weekly) analysis showed statistical significance at various levels when comparing the activities of non-paying learners with those of the certificate purchasers across the five courses analysed. Furthermore, we used the learner’s activities (number of step accesses, attempts, correct and wrong answers, and time spent on learning steps) to build our paid certification predictor, which achieved promising balanced accuracies (BAs), ranging from 0.77 to 0.95. Having employed simple predictions based on a few clickstream variables, we then analysed more in-depth what other information can be extracted from MOOC interaction (namely discussion forums) for paid certification prediction. However, to better explore the learners’ discussion forums, we built, as an original contribution, MOOCSent, a cross- platform review-based sentiment classifier, using over 1.2 million MOOC sentiment-labelled reviews. MOOCSent addresses various limitations of the current sentiment classifiers including (1) using one single source of data (previous literature on sentiment classification in MOOCs was based on single platforms only, and hence less generalisable, with relatively low number of instances compared to our obtained dataset;) (2) lower model outputs, where most of the current models are based on 2-polar iii iv classifier (positive or negative only); (3) disregarding important sentiment indicators, such as emojis and emoticons, during text embedding; and (4) reporting average performance metrics only, preventing the evaluation of model performance at the level of class (sentiment). Finally, and with the help of MOOCSent, we used the learners’ discussion forums to predict paid certification after annotating learners’ comments and replies with the sentiment using MOOCSent. This multi-input model contains raw data (learner textual inputs), sentiment classification generated by MOOCSent, computed features (number of likes received for each textual input), and several features extracted from the texts (character counts, word counts, and part of speech (POS) tags for each textual instance). This experiment adopted various deep predictive approaches – specifically that allow multi-input architecture - to early (i.e., weekly) investigate if data obtained from MOOC learners’ interaction in discussion forums can predict learners’ purchase decisions (certification). Considering the staggeringly low rate of paid certification in MOOCs, this present thesis contributes to the knowledge and field of MOOC learner analytics with predicting paid certification, for the first time, at such a comprehensive (with data from over 200 thousand learners from 5 different discipline courses), actionable (analysing learners decision from the first week of the course) and longitudinal (with 23 runs from 2013 to 2017) scale. The present thesis contributes with (1) investigating various conventional and deep ML approaches for predicting paid certification in MOOCs using learner clickstreams (Chapter 5) and course discussion forums (Chapter 7), (2) building the largest MOOC sentiment classifier (MOOCSent) based on learners’ reviews of the courses from the leading MOOC platforms, namely Coursera, FutureLearn and Udemy, and handles emojis and emoticons using dedicated lexicons that contain over three thousand corresponding explanatory words/phrases, (3) proposing and developing, for the first time, multi-input model for predicting certification based on the data from discussion forums which synchronously processes the textual (comments and replies) and numerical (number of likes posted and received, sentiments) data from the forums, adapting the suitable classifier for each type of data as explained in detail in Chapter 7

    The text classification pipeline: Starting shallow, going deeper

    Get PDF
    An increasingly relevant and crucial subfield of Natural Language Processing (NLP), tackled in this PhD thesis from a computer science and engineering perspective, is the Text Classification (TC). Also in this field, the exceptional success of deep learning has sparked a boom over the past ten years. Text retrieval and categorization, information extraction and summarization all rely heavily on TC. The literature has presented numerous datasets, models, and evaluation criteria. Even if languages as Arabic, Chinese, Hindi and others are employed in several works, from a computer science perspective the most used and referred language in the literature concerning TC is English. This is also the language mainly referenced in the rest of this PhD thesis. Even if numerous machine learning techniques have shown outstanding results, the classifier effectiveness depends on the capability to comprehend intricate relations and non-linear correlations in texts. In order to achieve this level of understanding, it is necessary to pay attention not only to the architecture of a model but also to other stages of the TC pipeline. In an NLP framework, a range of text representation techniques and model designs have emerged, including the large language models. These models are capable of turning massive amounts of text into useful vector representations that effectively capture semantically significant information. The fact that this field has been investigated by numerous communities, including data mining, linguistics, and information retrieval, is an aspect of crucial interest. These communities frequently have some overlap, but are mostly separate and do their research on their own. Bringing researchers from other groups together to improve the multidisciplinary comprehension of this field is one of the objectives of this dissertation. Additionally, this dissertation makes an effort to examine text mining from both a traditional and modern perspective. This thesis covers the whole TC pipeline in detail. However, the main contribution is to investigate the impact of every element in the TC pipeline to evaluate the impact on the final performance of a TC model. It is discussed the TC pipeline, including the traditional and the most recent deep learning-based models. This pipeline consists of State-Of-The-Art (SOTA) datasets used in the literature as benchmark, text preprocessing, text representation, machine learning models for TC, evaluation metrics and current SOTA results. In each chapter of this dissertation, I go over each of these steps, covering both the technical advancements and my most significant and recent findings while performing experiments and introducing novel models. The advantages and disadvantages of various options are also listed, along with a thorough comparison of the various approaches. At the end of each chapter, there are my contributions with experimental evaluations and discussions on the results that I have obtained during my three years PhD course. The experiments and the analysis related to each chapter (i.e., each element of the TC pipeline) are the main contributions that I provide, extending the basic knowledge of a regular survey on the matter of TC.An increasingly relevant and crucial subfield of Natural Language Processing (NLP), tackled in this PhD thesis from a computer science and engineering perspective, is the Text Classification (TC). Also in this field, the exceptional success of deep learning has sparked a boom over the past ten years. Text retrieval and categorization, information extraction and summarization all rely heavily on TC. The literature has presented numerous datasets, models, and evaluation criteria. Even if languages as Arabic, Chinese, Hindi and others are employed in several works, from a computer science perspective the most used and referred language in the literature concerning TC is English. This is also the language mainly referenced in the rest of this PhD thesis. Even if numerous machine learning techniques have shown outstanding results, the classifier effectiveness depends on the capability to comprehend intricate relations and non-linear correlations in texts. In order to achieve this level of understanding, it is necessary to pay attention not only to the architecture of a model but also to other stages of the TC pipeline. In an NLP framework, a range of text representation techniques and model designs have emerged, including the large language models. These models are capable of turning massive amounts of text into useful vector representations that effectively capture semantically significant information. The fact that this field has been investigated by numerous communities, including data mining, linguistics, and information retrieval, is an aspect of crucial interest. These communities frequently have some overlap, but are mostly separate and do their research on their own. Bringing researchers from other groups together to improve the multidisciplinary comprehension of this field is one of the objectives of this dissertation. Additionally, this dissertation makes an effort to examine text mining from both a traditional and modern perspective. This thesis covers the whole TC pipeline in detail. However, the main contribution is to investigate the impact of every element in the TC pipeline to evaluate the impact on the final performance of a TC model. It is discussed the TC pipeline, including the traditional and the most recent deep learning-based models. This pipeline consists of State-Of-The-Art (SOTA) datasets used in the literature as benchmark, text preprocessing, text representation, machine learning models for TC, evaluation metrics and current SOTA results. In each chapter of this dissertation, I go over each of these steps, covering both the technical advancements and my most significant and recent findings while performing experiments and introducing novel models. The advantages and disadvantages of various options are also listed, along with a thorough comparison of the various approaches. At the end of each chapter, there are my contributions with experimental evaluations and discussions on the results that I have obtained during my three years PhD course. The experiments and the analysis related to each chapter (i.e., each element of the TC pipeline) are the main contributions that I provide, extending the basic knowledge of a regular survey on the matter of TC

    An Integrated Framework Based on Latent Variational Autoencoder for Providing Early Warning of At-Risk Students

    Get PDF
    The rapid development of learning technologies has enabled online learning paradigm to gain great popularity in both high education and K-12, which makes the prediction of student performance become one of the most popular research topics in education. However, the traditional prediction algorithms are originally designed for balanced dataset, while the educational dataset typically belongs to highly imbalanced dataset, which makes it more difficult to accurately identify the at-risk students. In order to solve this dilemma, this study proposes an integrated framework (LVAEPre) based on latent variational autoencoder (LVAE) with deep neural network (DNN) to alleviate the imbalanced distribution of educational dataset and further to provide early warning of at-risk students. Specifically, with the characteristics of educational data in mind, LVAE mainly aims to learn latent distribution of at-risk students and to generate at-risk samples for the purpose of obtaining a balanced dataset. DNN is to perform final performance prediction. Extensive experiments based on the collected K-12 dataset show that LVAEPre can effectively handle the imbalanced education dataset and provide much better and more stable prediction results than baseline methods in terms of accuracy and F1.5 score. The comparison of t-SNE visualization results further confirms the advantage of LVAE in dealing with imbalanced issue in educational dataset. Finally, through the identification of the significant predictors of LVAEPre in the experimental dataset, some suggestions for designing pedagogical interventions are put forward

    Deep Neural Networks for Multi-Label Text Classification: Application to Coding Electronic Medical Records

    Get PDF
    Coding Electronic Medical Records (EMRs) with diagnosis and procedure codes is an essential task for billing, secondary data analyses, and monitoring health trends. Both speed and accuracy of coding are critical. While coding errors could lead to more patient-side financial burden and misinterpretation of a patient’s well-being, timely coding is also needed to avoid backlogs and additional costs for the healthcare facility. Therefore, it is necessary to develop automated diagnosis and procedure code recommendation methods that can be used by professional medical coders. The main difficulty with developing automated EMR coding methods is the nature of the label space. The standardized vocabularies used for medical coding contain over 10 thousand codes. The label space is large, and the label distribution is extremely unbalanced - most codes occur very infrequently, with a few codes occurring several orders of magnitude more than others. A few codes never occur in training dataset at all. In this work, we present three methods to handle the large unbalanced label space. First, we study how to augment EMR training data with biomedical data (research articles indexed on PubMed) to improve the performance of standard neural networks for text classification. PubMed indexes more than 23 million citations. Many of the indexed articles contain relevant information about diagnosis and procedure codes. Therefore, we present a novel method of incorporating this unstructured data in PubMed using transfer learning. Second, we combine ideas from metric learning with recent advances in neural networks to form a novel neural architecture that better handles infrequent codes. And third, we present new methods to predict codes that have never appeared in the training dataset. Overall, our contributions constitute advances in neural multi-label text classification with potential consequences for improving EMR coding

    Extracting personal information from conversations

    Get PDF
    Personal knowledge is a versatile resource that is valuable for a wide range of downstream applications. Background facts about users can allow chatbot assistants to produce more topical and empathic replies. In the context of recommendation and retrieval models, personal facts can be used to customize the ranking results for individual users. A Personal Knowledge Base, populated with personal facts, such as demographic information, interests and interpersonal relationships, is a unique endpoint for storing and querying personal knowledge. Such knowledge bases are easily interpretable and can provide users with full control over their own personal knowledge, including revising stored facts and managing access by downstream services for personalization purposes. To alleviate users from extensive manual effort to build such personal knowledge base, we can leverage automated extraction methods applied to the textual content of the users, such as dialogue transcripts or social media posts. Mainstream extraction methods specialize on well-structured data, such as biographical texts or encyclopedic articles, which are rare for most people. In turn, conversational data is abundant but challenging to process and requires specialized methods for extraction of personal facts. In this dissertation we address the acquisition of personal knowledge from conversational data. We propose several novel deep learning models for inferring speakers’ personal attributes: ‱ Demographic attributes, age, gender, profession and family status, are inferred by HAMs - hierarchical neural classifiers with attention mechanism. Trained HAMs can be transferred between different types of conversational data and provide interpretable predictions. ‱ Long-tailed personal attributes, hobby and profession, are predicted with CHARM - a zero-shot learning model, overcoming the lack of labeled training samples for rare attribute values. By linking conversational utterances to external sources, CHARM is able to predict attribute values which it never saw during training. ‱ Interpersonal relationships are inferred with PRIDE - a hierarchical transformer-based model. To accurately predict fine-grained relationships, PRIDE leverages personal traits of the speakers and the style of conversational utterances. Experiments with various conversational texts, including Reddit discussions and movie scripts, demonstrate the viability of our methods and their superior performance compared to state-of-the-art baselines.Personengebundene Fakten sind eine vielseitig nutzbare Quelle fĂŒr die verschiedensten Anwendungen. Hintergrundfakten ĂŒber Nutzer können es Chatbot-Assistenten ermöglichen, relevantere und persönlichere Antworten zu geben. Im Kontext von Empfehlungs- und Retrievalmodellen können personengebundene Fakten dazu verwendet werden, die Ranking-Ergebnisse fĂŒr Nutzer individuell anzupassen. Eine Personengebundene Wissensdatenbank, gefĂŒllt mit persönlichen Daten wie demografischen Angaben, Interessen und Beziehungen, kann eine universelle Schnittstelle fĂŒr die Speicherung und Abfrage solcher Fakten sein. Wissensdatenbanken sind leicht zu interpretieren und bieten dem Nutzer die vollstĂ€ndige Kontrolle ĂŒber seine personenbezogenen Fakten, einschließlich der Überarbeitung und der Verwaltung des Zugriffs durch nachgelagerte Dienste, etwa fĂŒr Personalisierungszwecke. Um den Nutzern den aufwĂ€ndigen manuellen Aufbau einer solchen persönlichen Wissensdatenbank zu ersparen, können automatisierte Extraktionsmethoden auf den textuellen Inhalten der Nutzer – wie z.B. Konversationen oder BeitrĂ€ge in sozialen Medien – angewendet werden. Die ĂŒblichen Extraktionsmethoden sind auf strukturierte Daten wie biografische Texte oder enzyklopĂ€dische Artikel spezialisiert, die bei den meisten Menschen keine Rolle spielen. In dieser Dissertation beschĂ€ftigen wir uns mit der Gewinnung von persönlichem Wissen aus Dialogdaten und schlagen mehrere neuartige Deep-Learning-Modelle zur Ableitung persönlicher Attribute von Sprechern vor: ‱ Demographische Attribute wie Alter, Geschlecht, Beruf und Familienstand werden durch HAMs - Hierarchische Neuronale Klassifikatoren mit Attention-Mechanismus - abgeleitet. Trainierte HAMs können zwischen verschiedenen Arten von GesprĂ€chsdaten ĂŒbertragen werden und liefern interpretierbare Vorhersagen ‱ Vielseitige persönliche Attribute wie Hobbys oder Beruf werden mit CHARM ermittelt - einem Zero-Shot-Lernmodell, das den Mangel an markierten Trainingsbeispielen fĂŒr seltene Attributwerte ĂŒberwindet. Durch die VerknĂŒpfung von GesprĂ€chsĂ€ußerungen mit externen Quellen ist CHARM in der Lage, Attributwerte zu ermitteln, die es beim Training nie gesehen hat ‱ Zwischenmenschliche Beziehungen werden mit PRIDE, einem hierarchischen transformerbasierten Modell, abgeleitet. Um prĂ€zise Beziehungen vorhersagen zu können, nutzt PRIDE persönliche Eigenschaften der Sprecher und den Stil von KonversationsĂ€ußerungen Experimente mit verschiedenen Konversationstexten, inklusive Reddit-Diskussionen und Filmskripten, demonstrieren die Praxistauglichkeit unserer Methoden und ihre hervorragende Leistung im Vergleich zum aktuellen Stand der Technik

    Mapping (Dis-)Information Flow about the MH17 Plane Crash

    Get PDF
    Digital media enables not only fast sharing of information, but also disinformation. One prominent case of an event leading to circulation of disinformation on social media is the MH17 plane crash. Studies analysing the spread of information about this event on Twitter have focused on small, manually annotated datasets, or used proxys for data annotation. In this work, we examine to what extent text classifiers can be used to label data for subsequent content analysis, in particular we focus on predicting pro-Russian and pro-Ukrainian Twitter content related to the MH17 plane crash. Even though we find that a neural classifier improves over a hashtag based baseline, labeling pro-Russian and pro-Ukrainian content with high precision remains a challenging problem. We provide an error analysis underlining the difficulty of the task and identify factors that might help improve classification in future work. Finally, we show how the classifier can facilitate the annotation task for human annotators
    • 

    corecore