54 research outputs found

    저전력, 저면적 유선 송수신기 설계를 위한 회로 기술

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2016. 8. 정덕균.In this thesis, novel circuit techniques for low-power and area-efficient wireline transceiver, including a phase-locked loop (PLL) based on a two-stage ring oscillator, a scalable voltage-mode transmitter, and a forwarded-clock (FC) receiver based on a delay-locked-loop (DLL) based per-pin deskew, are proposed. At first, a two-stage ring PLL that provides a four-phase, high-speed clock for a quarter-rate TX in order to minimize power consumption is presented. Several analyses and verification techniques, ranging from the clocking architectures for a high-speed TX to oscillation failures in a two-stage ring oscillator, are addressed in this thesis. A tri-state-inverter–based frequency-divider and an AC-coupled clock-buffer are used for high-speed operations with minimal power and area overheads. The proposed PLL fabricated in the 65-nm CMOS technology occupies an active area of 0.009 mm2 with an integrated-RMS-jitter of 414 fs from 10 kHz to 100 MHz while consuming 7.6 mW from a 1.2-V supply at 10 GHz. The resulting figure-of-merit is -238.8 dB, which surpasses that of the state-of-the-art ring-PLLs by 4 dB. Secondly, a voltage-mode (VM) transmitter which offers a wide operation range of 6 to 32 Gb/s, controllable pre-emphasis equalization and output voltage swing without altering output impedance, and a power supply scalability is presented. A quarter-rate clocking architecture is employed in order to maximize the scalability and energy efficiency across the variety of operating conditions. A P-over-N VM driver is used for CMOS compatibility and wide voltage-swing range required for various I/O standards. Two supply regulators calibrate the output impedance of the VM driver across the wide swing and pre-emphasis range. A single phase-locked loop is used to provide a wide frequency range of 1.5-to-8 GHz. The prototype chip is fabricated in 65-nm CMOS technology and occupies active area of 0.48x0.36 mm2. The proposed transmitter achieves 250-to-600-mV single-ended swing and exhibits the energy efficiency of 2.10-to-2.93 pJ/bit across the data rate of 6-to-32 Gb/s. And last, this thesis describes a power and area-efficient FC receiver and includes an analysis of the jitter tolerance of the FC receiver. In the proposed design, jitter tolerance is maximized according to the analysis by employing a DLL-based de-skewing. A sample-swapping bang-bang phase-detector (SS-BBPD) eliminates the stuck locking caused by the finite delay range of the voltage-controlled delay line (VCDL), and also reduces the required delay range of the VCDL by half. The proposed FC receiver is fabricated in 65-nm CMOS technology and occupies an active area of 0.025 mm2. At a data rate of 12.5 Gb/s, the proposed FC receiver exhibits an energy efficiency of 0.36 pJ/bit, and tolerates 1.4-UIpp sinusoidal jitter of 300 MHz.Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Thesis organization 5 Chapter 2. Phase-Locked Loop Based on Two-Stage Ring Oscillator 7 2.1. Overivew 7 2.2. Background and Analysis of a Two-stage Ring Oscillator 11 2.3. Circuit Implementation of The Proposed PLL 25 2.4. Measurement Results 33 Chapter 3. A Scalable Voltage-Mode Transmitter 37 3.1. Overview 37 3.2. Design Considerations on a Scalable Serial Link Transmitter 40 3.3. Circuit Implementation 46 3.4. Measurement Results 56 Chapter 4. Delay-Locked Loop Based Forwarded-Clock Receiver 62 4.1. Overview 62 4.2. Timing and Data Recovery in a Serial Link 65 4.3. DLL-Based Forwarded-Clock Receiver Characteristics 70 4.4. Circuit Implementation 79 4.5. Measurement Results 89 Chapter 5. Conclusion 94 Appendix 96 Appendix A. Design flow to optimize a high-speed ring oscillator 96 Appendix B. Reflection Issues in N-over-N Voltage-Mode Driver 99 Appendix C. Analysis on output swing and power consumption of the P-over-N voltage-mode driver 107 Appendix D. Loop Dynamics of DLL 112 Bibliography 121 Abstract 128Docto

    DESIGN AND CHARACTERIZATION OF LOW-POWER LOW-NOISE ALLDIGITAL SERIAL LINK FOR POINT-TO-POINT COMMUNICATION IN SOC

    Get PDF
    The fully-digital implementation of serial links has recently emerged as a viable alternative to their classical analogue counterpart. Indeed, reducing the analogue content in favour of expanding the digital content becomes more attractive due to the ability to achieve less power consumption, less sensitivity to the noise and better scalability across multiple technologies and platforms with inconsiderable modifications. In addition, describing the circuit in hardware description languages gives it a high flexibility to program all design parameters in a very short time compared with the analogue designs which need to be re-designed at transistor level for any parameter change. This can radically reduce cost and time-to-market by saving a significant amount of development time. However, beside these considerable advantages, the fully-digital architecture poses several design challenges

    메모리 인터페이스를 위한 20Gbps급 직렬화 송수신기 설계

    Get PDF
    학위논문 (박사)-- 서울대학교 대학원 : 전기·컴퓨터공학부, 2013. 8. 정덕균.Various types of serial link for current and future memory interface are presented in this thesis. At first, PHY design for commercial GDDR3 memory is proposed. GDDR3 PHY is consists of read path, write path, command path. Write path and command path calibrate skew by using VDL (Variable delay line), while read path calibrates skew by using DLL (Delay locked loop) and VDL. There are four data channels and one command/address channel. Each data channel consists of one clock signal (DQS) and eight data signals (DQ). Data channel operates in 1.2Gbps (1.08Gbps~1.2Gbps), and command/address channel operates 600Mbps (540Mbps~600Mbps). In particular, DLL design for high speed and for SSN (simultaneous switching noise) is concentrated in this thesis. Secondly, serial link design for silicon photonics is proposed. Silicon photonics is the strongest candidate for next generation memory interface. Modulator driver for modulator, TIA (trans-impedance amplifier) and LA (limiting amplifier) for photo diode design are discussed. It operates above 12.5Gbps but it consumes much power 7.2mW/Gbps (transmitter core), 2mW/Gbps (receiver core) because it is connected with optical device which has large parasitic capacitance. Overall receiver which includes CDR (clock and data recovery) is also implemented. Many chips are fabricated in 65nm, 0.13um CMOS process. Finally, electrical serial link for 20Gbps memory link is proposed. Overall architecture is forwarded clocking architecture, and is very simple and intuitive. It does not need additional synchronizer. This open loop delay matched stream line receiver finds optimum sampling point with DCDL (Digitally controlled delay line) controller and expects to consume low power structurally. Only two phase half rate clock is transmitted through clock channel, but half rate time interleaved way sampling is performed by aid of initial value settable PRBS chaser. A CMOS Chip is fabricated by 65nm process and it occupies 2500um x 2500um (transceiver). It is expected that about 2.6mW(2.4mW)/Gbps (transmitter), 4.1mW(2.7mW)/Gbps (receiver). Power consumption improvement is expected in advanced process.ABSTRACT I CONTENTS V LIST OF FIGURES VII LIST OF TABLES XII CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 THESIS ORGANIZATION 10 CHAPTER 2 A SERIAL LINK PHY DESIGN FOR GDDR3 MEMORY INTERFACE 11 2.1 INTRODUCTION 11 2.2 GDDR3 MEMORY INTERFACE ARCHITECTURE 12 2.2.1 READ PATH ARCHITECTURE 15 2.2.2 WRITE PATH ARCHITECTURE 17 2.2.3 COMMAND PATH ARCHITECTURE 19 2.3 DLL DESIGN FOR MEMORY INTERFACE 20 2.3.1 SSN(SIMULTANEOUS SWITCHING NOISE) 20 2.3.2 DLL ARCHITECTURE 21 2.3.3 VOLTAGE CONTROLLED DELAY LINE (VCDL) 22 2.3.4 HYSTERESIS COARSE LOCK DETECTOR (HCLD) 23 2.3.5 DYNAMIC PHASE DETECTOR AND CHARGE PUMP 26 2.4 SIMULATION RESULT 29 2.5 CONCLUSION 32 CHAPTER 3 OPTICAL FRONT-END SERIAL LINK DESIGN FOR 20 GBPS MEMORY INTERFACE 35 3.1 SILICON PHOTONICS INTRODUCTION 35 3.2 OPTICAL FRONT-END TRANSMITTER DESIGN 45 3.2.1 MODULATOR DRIVER REQUIREMENTS 46 3.2.2 MODULATOR DRIVER DESIGN - CURRENT MODE DRIVER 47 3.2.3 MODULATOR DRIVER DESIGN - CURRENT MODE DRIVER 50 3.3 OPTICAL FRONT-END RECEIVER DESIGN 55 3.3.1 OPTICAL RECEIVER BACK END REQUIREMENTS 56 3.3.2 OPTICAL RECEIVER BACK END DESIGN – TIA 57 3.3.3 OPTICAL RECEIVER BACK END DESIGN – LA, DRIVER 63 3.3.4 OPTICAL RECEIVER BACK END DESIGN – CDR 66 3.4 MEASUREMENT AND SIMULATION RESULTS 70 3.4.1 MEASUREMENT AND SIMULATION ENVIRONMENTS 70 3.4.2 OPTICAL TX FRONT END MEASUREMENT AND SIMULATION 74 3.4.3 OPTICAL RX FRONT END MEASUREMENT AND SIMULATION 77 3.4.4 OPTICAL RX BACK END SIMULATION 79 3.4.5 OPTICAL-ELECTRICAL OVERALL MEASUREMENTS 80 3.4.6 DIE PHOTO AND LAYOUT 82 3.5 CONCLUSION 86 CHAPTER 4 ELECTRICAL FRONT-END SERIAL LINK DESIGN FOR 20GBPS MEMORY INTERFACE 87 4.1 INTRODUCTION 87 4.2 CONVENTIONAL ELECTRICAL FRONT-END HIGH SPEED SERIAL LINK ARCHITECTURES 90 4.3 DESIGN CONCEPT AND PROPOSED SERIAL LINK ARCHITECTURE – OPEN LOOP DELAY MATCHED STREAM LINED RECEIVER. 95 4.3.1 PROPOSED OVERALL ARCHITECTURE 95 4.3.2 DESIGN CONCEPT 97 4.3.3 PROPOSED PROTOCOL AND LOCKING PROCESS 100 4.4 OPTIMUM POINT SEARCH ALGORITHM BASED DCDL CONTROLLER DESIGN 102 4.5 DCDL (DIGITALLY CONTROLLED DELAY LINE) DESIGN 112 4.6 DFE (DECISION FEEDBACK EQUALIZER) AND OTHER BLOCKS DESIGN 115 4.7 SIMULATION RESULTS 117 4.8 POWER EXPECTATION AND CHIP LAYOUT 122 4.9 CONCLUSION 124 CHAPTER 5 CONCLUSION 126 BIBLIOGRAPHY 128Docto

    An embedded tester core for mixed-signal System-on-Chip circuits

    Get PDF

    Low jitter phase-locked loop clock synthesis with wide locking range

    Get PDF
    The fast growing demand of wireless and high speed data communications has driven efforts to increase the levels of integration in many communications applications. Phase noise and timing jitter are important design considerations for these communications applications. The desire for highly complex levels of integration using low cost CMOS technologies works against the minimization of timing jitter and phase noise for communications systems which employ a phase-locked loop for frequency and clock synthesis with on-chip VCO. This dictates an integrated CMOS implementation of the VCO with very low phase noise performance. The ring oscillator VCOs based on differential delay cell chains have been used successfully in communications applications, but thermal noise induced phase noise have to be minimized in order not to limit their applicability to some applications which impose stringent timing jitter and phase noise requirements on the PLL clock synthesizer. Obtaining lower timing jitter and phase noise at the PLL output also requires the minimization of noise in critical circuit design blocks as well as the optimization of the loop bandwidth of the PLL. In this dissertation the fundamental performance limits of CMOS PLL clock synthesizers based on ring oscillator VCOs are investigated. The effect of flicker and thermal noise in MOS transistors on timing jitter and phase noise are explored, with particular emphasis on source coupled NMOS differential delay cells with symmetric load elements. Several new circuit architectures are employed for the charge pump circuit and phase-frequency detector (PFD) to minimize the timing jitter due to the finite dead zone in the PFD and the current mismatch in the charge pump circuit. The selection of the optimum PLL loop bandwidth is critical in determining the phase noise performance at the PLL output. The optimum loop bandwidth and the phase noise performance of the PLL is determined using behavioral simulations. These results are compared with transistor level simulated results and experimental results for the PLL clock synthesizer fabricated in a 0.35 µm CMOS technology with good agreement. To demonstrate the proposed concept, a fully integrated CMOS PLL clock synthesizer utilizing integer-N frequency multiplier technique to synthesize several clock signals in the range of 20-400 MHz with low phase noise was designed. Implemented in a standard 0.35-µm N-well CMOS process technology, the PLL achieves a period jitter of 6.5-ps (rms) and 38-ps (peak-to-peak) at 216 MHz with a phase noise of -120 dBc/Hz at frequency offsets above 10 KHz. The specific research contributions of this work include (1) proposing, designing, and implementing a new charge pump circuit architecture that matches current levels and therefore minimizes one source of phase noise due to fluctuations in the control voltage of the VCO, (2) an improved phase-frequency detector architecture which has improved characteristics in lock condition, (3) an improved ring oscillator VCO with excellent thermal noise induced phase noise characteristics, (4) the application of selfbiased techniques together with fixed bias to CMOS low phase noise PLL clock synthesizer for digital video communications ,and (5) an analytical model that describes the phase noise performance of the proposed VCO and PLL clock synthesizer

    Digital enhancement techniques for fractional-N frequency synthesizers

    Get PDF
    Meeting the demand for unprecedented connectivity in the era of internet-of-things (IoT) requires extremely energy efficient operation of IoT nodes to extend battery life. Managing the data traffic generated by trillions of such nodes also puts severe energy constraints on the data centers. Clock generators that are essential elements in these systems consume significant power and therefore must be optimized for low power and high performance. The focus of this thesis is on improving the energy efficiency of frequency synthesizers and clocking modules by exploring design techniques at both the architectural and circuit levels. In the first part of this work, a digital fractional-N phase locked loop (FNPLL) that employs a high resolution time-to-digital converter (TDC) and a truly ΔΣ fractional divider to achieve low in-band noise with a wide bandwidth is presented. The fractional divider employs a digital-to-time converter (DTC) to cancel out ΔΣ quantization noise in time domain, thus alleviating TDC dynamic range requirements. The proposed digital architecture adopts a narrow range low-power time-amplifier based TDC (TA-TDC) to achieve sub 1ps resolution. Fabricated in 65nm CMOS process, the prototype PLL achieves better than -106dBc/Hz in-band noise and 3MHz PLL bandwidth at 4.5GHz output frequency using 50MHz reference. The PLL achieves excellent jitter performance of 490fsrms, while consumes only 3.7mW. This translates to the best reported jitter-power figure-of-merit (FoM) of -240.5dB among previously reported FNPLLs. Phase noise performance of ring oscillator based digital FNPLLs is severely compromised by conflicting bandwidth requirements to simultaneously suppress oscillator phase and quantization noise introduced by the TDC, ΔΣ fractional divider, and digital-to-analog converter (DAC). As a consequence, their FoM that quantifies the power-jitter tradeoff is at least 25dB worse than their LC-oscillator based FNPLL counterparts. In the second part of this thesis, we seek to close this performance gap by extending PLL bandwidth using quantization noise cancellation techniques and by employing a dual-path digital loop filter to suppress the detrimental impact of DAC quantization noise. A prototype was implemented in a 65nm CMOS process operating over a wide frequency range of 2.0GHz-5.5GHz using a modified extended range multi-modulus divider with seamless switching. The proposed digital FNPLL achieves 1.9psrms integrated jitter while consuming only 4mW at 5GHz output. The measured in-band phase noise is better than -96 dBc/Hz at 1MHz offset. The proposed FNPLL achieves wide bandwidth up to 6MHz using a 50 MHz reference and its FoM is -228.5dB, which is at about 20dB better than previously reported ring-based digital FNPLLs. In the third part, we propose a new multi-output clock generator architecture using open loop fractional dividers for system-on-chip (SoC) platforms. Modern multi-core processors use per core clocking, where each core runs at its own speed. The core frequency can be changed dynamically to optimize for performance or power dissipation using a dynamic frequency scaling (DFS) technique. Fast frequency switching is highly desirable as long as it does not interrupt code execution; therefore it requires smooth frequency transitions with no undershoots. The second main requirement in processor clocking is the capability of spread spectrum frequency modulation. By spreading the clock energy across a wide bandwidth, the electromagnetic interference (EMI) is dramatically reduced. A conventional PLL clock generation approach suffers from a slow frequency settling and limited spread spectrum modulation capabilities. The proposed open loop fractional divider architecture overcomes the bandwidth limitation in fractional-N PLLs. The fractional divider switches the output frequency instantaneously and provides an excellent spread spectrum performance, where precise and programmable modulation depth and frequency can be applied to satisfy different EMI requirements. The fractional divider has unlimited modulation bandwidth resulting in spread spectrum modulation with no filtering, unlike fractional-N PLL; consequently it achieves higher EMI reduction. A prototype fractional divider was implemented in a 65nm CMOS process, where the measured peak-to-peak jitter is less than 27ps over a wide frequency range from 20MHz to 1GHz. The total power consumption is about 3.2mW for 1GHz output frequency. The all-digital implementation of the divider occupies the smallest area of 0.017mm2 compared to state-of-the-art designs. As the data rate of serial links goes higher, the jitter requirements of the clock generator become more stringent. Improving the jitter performance of conventional PLLs to less than (200fsrms) always comes with a large power penalty (tens of mWs). This is due to the PLL coupled noise bandwidth trade-off, which imposes stringent noise requirements on the oscillator and/or loop components. Alternatively, an injection-locked clock multiplier (ILCM) provides many advantages in terms of phase noise, power, and area compared to classical PLLs, but they suffer from a narrow lock-in range and a high sensitivity to PVT variations especially at a large multiplication factor (N). In the fourth part of this thesis, a low-jitter, low-power LC-based ILCM with a digital frequency-tracking loop (FTL) is presented. The proposed FTL relies on a new pulse gating technique to continuously tune the oscillator's free-running frequency. The FTL ensures robust operation across PVT variations and resolves the race condition existing in injection locked PLLs by decoupling frequency tuning from the injection path. As a result, the phase locking condition is only determined by the injection path. This work also introduces an accurate theoretical large-signal analysis for phase domain response (PDR) of injection locked oscillators (ILOs). The proposed PDR analysis captures the asymmetric nature of ILO's lock-in range, and the impact of frequency error on injection strength and phase noise performance. The proposed architecture and analysis are demonstrated by a prototype fabricated in 65 nm CMOS process with active area of 0.25mm2. The prototype ILCM multiplies the reference frequency by 64 to generate an output clock in the range of 6.75GHz-8.25GHz. A superior jitter performance of 190fsrms is achieved, while consuming only 2.25mW power. This translates to a best FoM of -251dB. Unlike conventional PLLs, ILCMs have been fundamentally limited to only integer-N operation and cannot synthesize fractional-N frequencies. In the last part of this thesis, we extend the merits of ILCMs to fractional-N and overcome this fundamental limitation. We employ DTC-based QNC techniques in order to align injected pulses to the oscillator's zero crossings, which enables it to pull the oscillator toward phase lock, thus realizing a fractional-N ILCM. Fabricated in 65nm CMOS process, a prototype 20-bit fractional-N ILCM with an output range of 6.75GHz-8.25GHz consumes only 3.25mW. It achieves excellent jitter performance of 110fsrms and 175fsrms in integer- and fractional-N modes respectively, which translates to the best-reported FoM in both integer- (-255dB) and fractional-N (-252dB) modes. The proposed fractional-N ILCM also features the first-reported rapid on/off capability, where the transient absolute jitter performance at wake-up is bounded below 4ps after less than 4ns. This demonstrates almost instantaneous phase settling. This unique capability enables tremendous energy saving by turning on the clock multiplier only when needed. This energy proportional operation leverages idle times to save power at the system-level of wireline and wireless transceivers

    Delay Measurements and Self Characterisation on FPGAs

    No full text
    This thesis examines new timing measurement methods for self delay characterisation of Field-Programmable Gate Arrays (FPGAs) components and delay measurement of complex circuits on FPGAs. Two novel measurement techniques based on analysis of a circuit's output failure rate and transition probability is proposed for accurate, precise and efficient measurement of propagation delays. The transition probability based method is especially attractive, since it requires no modifications in the circuit-under-test and requires little hardware resources, making it an ideal method for physical delay analysis of FPGA circuits. The relentless advancements in process technology has led to smaller and denser transistors in integrated circuits. While FPGA users benefit from this in terms of increased hardware resources for more complex designs, the actual productivity with FPGA in terms of timing performance (operating frequency, latency and throughput) has lagged behind the potential improvements from the improved technology due to delay variability in FPGA components and the inaccuracy of timing models used in FPGA timing analysis. The ability to measure delay of any arbitrary circuit on FPGA offers many opportunities for on-chip characterisation and physical timing analysis, allowing delay variability to be accurately tracked and variation-aware optimisations to be developed, reducing the productivity gap observed in today's FPGA designs. The measurement techniques are developed into complete self measurement and characterisation platforms in this thesis, demonstrating their practical uses in actual FPGA hardware for cross-chip delay characterisation and accurate delay measurement of both complex combinatorial and sequential circuits, further reinforcing their positions in solving the delay variability problem in FPGAs

    Design Techniques of Energy Efficient PLL for Enhanced Noise and Lock Performance

    Get PDF
    Phase locked loops(PLLs)are vital building blocks of communication sys-tems whose performance dictates the quality of communication.The design of PLL to o_er superior performance is the prime objective of this research.It is desirable for the PLL to have fast locking,low noise,low reference spur,wide lock range,low power consumption consuming less silicon area.To achieve these performance parameters simultaneously in a PLL being a challenging task is taken up as a scope of the present work.A comprehensive study of the performance linked PLL components along with their design challenges is made in this report.The phase noise which is directly related to the dead zone of the PLL is minimized using an e_cient phase frequency detector(PFD)in this thesis.Here a voltage variable delay element is inserted in the reset path of the PFD to reduce the dead zone.An adaptive PFD architecture is also proposed to have a low noise and fast PLL simultaneously.In this work,before locking a fast PFD and in the locked state a low noise PFD operates to dictate the phase di_erence of the reference and feedback signals.To reduce the reference spur,a novel charge pump architecture is proposed which eventually reduces the lock time up to a great extent.In this charge pump a single current source is employed to reduce the output current mis-match and transmission gates are used to reduce the non ideal e_ects.Besides this,the fabrication process variations have a predominant e_ect on the PLL performance,which is directly linked to the locking capability.This necessitates a manufacturing process variation tolerant design of the PLL.In this work an e_cient multi-objective optimization method is also applied to at-tain multiple optimal performance objectives.The major performances under consideration are lock time,phase noise,lock range and power consumption

    A Low Jitter Wideband Fractional-N Subsampling Phase Locked Loop (SSPLL)

    Get PDF
    Frequency synthesizers have become a crucial building block in the evolution of modern communication systems and consumer electronics. The spectral purity performance of frequency synthesizers limits the achievable data-rate and presents a noise-power tradeoff. For communication standards such as LTE where the channel spacing is a few kHz, the synthesizers must provide high frequencies with sufficiently wide frequency tuning range and fine frequency resolutions. Such stringent performance must be met with a limited power and small chip area. In this thesis a wideband fractional-N frequency synthesizer based on a subsampling phase locked loop (SSPLL) is presented. The proposed synthesizer which has a frequency resolution less than 100Hz employs a digital fractional controller (DFC) and a 10-bit digital-to-time converter (DTC) to delay the rising edges of the reference clock to achieve fractional phase lock. For fast convergence of the delay calibration, a novel two-step delay correlation loop (DCL) is employed. Furthermore, to provide optimum settling and jitter performance, the loop transfer characteristics during frequency acquisition and phase-lock are decoupled using a dual input loop filter (DILF). The fractional-N sub-sampling PLL (FNSSPLL) is implemented in a TSMC 40nm CMOS technology and occupies a total active area of 0.41mm^2. The PLL operates over frequency range of 2.8 GHz to 4.3 GHz (42% tuning range) while consuming 9.18mW from a 1.1V supply. The integrated jitter performance is better than 390 fs across all fractional frequency channel. The worst case fractional spur of -48.3 dBc occurs at a 650 kHz offset for a 3.75GHz fractional channel. The in-band phase noise measured at a 200 kHz offset is -112.5 dBc/Hz
    corecore