209 research outputs found

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    A 2.4-GHz, 2.2-W, 2-V fully-integrated CMOS circular-geometry active-transformer power amplifier

    Get PDF
    A 2.4-GHz, 2.2-W, 2-V fully integrated circular geometry power amplifier with 50 Ω input and output matching is fabricated using 2.5V, 0.35 pm CMOS transistors. It can also produce 450mW using a 1V supply. Harmonic suppression is 64dB or better. An on-chip circular-geometry active-transformer is used to combine several push-pull low-voltage amplifiers efficiently to produce a larger output power while maintaining a 50 Ω match. This new on-chip power combining and impedance matching method uses virtual ac grounds and magnetic couplings extensively to eliminate the need for any off-chip component such as wirebonds. It also desensitizes the operation of the amplifier to the inductance of bonding wires and makes the design more reproducible. This new topology makes possible a fully-integrated 2.2W, 2.4GHz, low voltage CMOS power amplifier for the first time

    Analysis and design of a high power millimeter-wave power amplifier in a SiGe BiCMOS technology

    Get PDF
    Our current society is characterized by an ever increasing need for bandwidth leading towards the exploration of new parts of the electromagnetic spectrum for data transmission. This results in a rising interest and development of millimeter-wave (mm-wave) circuits which hold the promise of short range multi-gigabit wireless transmissions at 60GHz. These relatively new applications are to co-exist with more established mm-wave consumer products including satellite systems in the Ka-band (26.5GHz - 40GHz) allowing e.g.: video broadcasting, voice over IP (VoIP), internet acces to remote areas, ... Both need significant linear power amplification due to the high attenuation typical for this part of the spectrum, however, satellite systems demand a saturated output power which is easily an order of magnitude larger (output powers in excess of 30dBm / 1W). Monolithic microwave integrated circuits (MMICs) employing III-V chip technologies, e.g.: gallium arsenide (GaAs), gallium nitride (GaN), have historically been the preferred choice to implement efficient mm-wave power amplifiers (PA) with a high saturated output power (>30dBm). To further increase the commercial viability of consumer products in this market segment a low manufacturing cost for the power amplifier, together with the possible integration of additional functions, is highly desirable. These features are the strongpoint of silicon based chip technologies like CMOS and SiGe BiCMOS. However, these technologies have a breakdown voltage typically below 2V for nodes capable of millimeter-wave applications while III-V transistors with equivalent frequency performance demonstrate breakdown voltages in excess of 8V. Because of this, output powers of CMOS and SiGe BiCMOS Ka-band power amplifiers rarely exceed 20dBm which poses the main hurdle for using these technologies in satellite communication (SATCOM). To overcome the limited output power of a single amplifying cell in a silicon technology, caused by the low breakdown voltage, multiple power amplifiers cells need to have their output power effectively combined on-chip. This requires the on-chip integration of high-Q passives within a relative small area to realize both the impedance transformation, to create the optimal load impedance for the different amplifier cells, and implement an efficient on-chip power combination network. Compared to III-V technologies this is again a challenge due to the use of a silicon substrate which introduces higher losses. Once a large enough on-chip output power is created, the issue of launching this signal to the outside world remains. Moreover, due to the limited efficiency of mm-wave PAs, the generated on-chip heat will increase when larger output power are required. This means a chipto-board interface with a low thermal resistance and a low loss electrical connection needs to be devised. Proof of the viability of silicon as a serious candidate for the integration of medium and high power Ka-band amplifiers will only be delivered by long term research and the actual creation of such an amplifier. In this context, the initial goal for the presented work is proposed. This consists of the creation of a power amplifier with a saturated output power above 24dBm (preferably 27dBm), a gain larger than 20dB and an efficiency in excess of 10% (preferably 15%). These specifications where conceived with the precondition of using a 250nm SiGe BiCMOS technology (IHP’s SG25H3) with an fT of 110GHz and a collector to emitter breakdown voltage in open base conditions (BVCEO) of 2.3V. The use of this technology is a significant challenge due to the limited speed, rule of thumb is to have at least one fifth of the fT as the operating frequency, which reflects in the attainable power added efficiency (PAE). On the other hand, proving the possible implementation in this “older” technology shows great potential towards the future integration in a fast technology (e.g.: IHP’s SG13G2, ft =300GHz). Next to issues caused by limitations of the chip technology, the proposed specifications allows to identify generic difficulties with high power silicon PA design, e.g.: design of efficient on-chip power combiners, thermal management, single-ended to differential conversion, ... As this work is of an academic nature the intention of this design was to leave the beaten track and explore alternative topologies. This has led to the adoption of a driver stage using translinear loops for biasing and a transformer-type Wilkinson power combiner previously only used in cable television (CATV) applications. Although the power combiner showed 2dB more loss than expected due to higher than expected substrate losses, both topologies show promise for further integration. Furthermore, an in-depth analysis was performed on the output stage which uses positive feedback to increase its gain. The entire design consists of a four-way power combining class AB power amplifier together with test structures of which the performance was verified by means of probing. Due to the previously mentioned higher than expected loss in the on-chip power combiner, the total output power and power added efficiency (PAE) was 2dB lower than expected from simulations. The result is a saturated output power at 32GHz of 24.1dBm with a PAE of 7.2% and a small signal gain of 25dB. This demonstrates the capability of SiGe BiCMOS to implement PA’s for medium-power mm-wave applications. Moreover, to the best of the author’s knowledge, this PA achieves the second highest saturated output power when comparing SiGe BiCMOS PA’s with center frequency in or close to the Ka-band. The 1dB compression point of this amplifier lies at 22.7dBm which is close to saturated output power and results in a low spectral regrowth when compared to commercial GaAs PA’s (compared with 2MBaud 16QAM input signal at 10dB back-off). Many possible improvements to this design remain. The most important would be the re-design of the on-chip power combiner, possibly with a floating ground shield, to reduce the losses and increase the total output power and PAE. Also the porting of the design to a faster chip technology might result in a considerable increase of the output stage efficiency at the cost of needing to combine more amplifier cells. The transition to a faster chip technology would additionally allow to use this design for alternative mm-wave applications like automotive radar at 79GHz andWiGig at 60GHz

    Design and Analysis of Low-power Millimeter-Wave SiGe BiCMOS Circuits with Application to Network Measurement Systems

    Get PDF
    Interest in millimeter (mm-) wave frequencies covering the spectrum of 30-300 GHz has been steadily increasing. Advantages such as larger absolute bandwidth and smaller form-factor have made this frequency region attractive for numerous applications, including high-speed wireless communication, sensing, material science, health, automotive radar, and space exploration. Continuous development of silicon-germanium heterojunction bipolar transistor (SiGe HBT) and associated BiCMOS technology has achieved transistors with fT/fmax of 505/720 GHz and integration with 55 nm CMOS. Such accomplishment and predictions of beyond THz performance have made SiGe BiCMOS technology the most competitive candidate for addressing the aforementioned applications. Especially for mobile applications, a critical demand for future mm-wave applications will be low DC power consumption (Pdc), which requires a substantial reduction of supply voltage and current. Conventionally, reducing the supply voltage will lead to HBTs operating close to or in the saturation region, which is typically avoided in mm-wave circuits due to expectated performance degradation and often inaccurate models. However, due to only moderate speed reduction at the forward-biased base-collector voltage (VBC) up to 0.5 V and the accuracy of the compact model HICUM/L2 also in saturation, low-power mm-wave circuits with SiGe HBTs operating in saturation offer intriguing benefits, which have been explored in this thesis based on 130 nm SiGe BiCMOS technologies: • Different low-power mm-wave circuit blocks are discussed in detail, including low-noise amplifiers (LNAs), down-conversion mixers, and various frequency multipliers covering a wide frequency range from V-band (50-75 GHz) to G-band (140-220 GHz). • Aiming at realizing a better trade-off between Pdc and RF performance, a drastic decrease in supply voltage is realized with forward-biased VBC, forcing transistors of the circuits to operate in saturation. • Discussions contain the theoretical analysis of the key figure of merits (FoMs), topology and bias selection, device sizing, and performance enhancement techniques. • A 173-207 GHz low-power amplifier with 23 dB gain and 3.2 mW Pdc, and a 72-108 GHz low-power tunable amplifier with 10-23 dB gain and 4-21 mW Pdc were designed. • A 97 GHz low-power down-conversion mixer was presented with 9.6 dB conversion gain (CG) and 12 mW Pdc. • For multipliers, a 56-66 GHz low-power frequency quadrupler with -3.6 dB peak CG and 12 mW Pdc, and a 172-201 GHz low-power frequency tripler with -4 dB peak CG and 10.5 mW Pdc were realized. By cascading these two circuits, also a 176-193 GHz low-power ×12 multiplier was designed, achieving -11 dBm output power with only 26 mW Pdc. • An integrated 190 GHz low-power receiver was designed as one receiving channel of a G-band frequency extender specifically for a VNA-based measurement system. Another goal of this receiver is to explore the lowest possible Pdc while keeping its highly competitive RF performance for general applications requiring a wide LO tuning range. Apart from the low-power design method of circuit blocks, the careful analysis and distribution of the receiver FoMs are also applied for further reduction of the overall Pdc. Along this line, this receiver achieved a peak CG of 49 dB with a 14 dB tunning range, consuming only 29 mW static Pdc for the core part and 171 mW overall Pdc, including the LO chain. • All designs presented in this thesis were fabricated and characterized on-wafer. Thanks to the accurate compact model HICUM/L2, first-pass access was achieved for all circuits, and simulation results show excellent agreement with measurements. • Compared with recently published work, most of the designs in this thesis show extremely low Pdc with highly competitive key FoMs regarding gain, bandwidth, and noise figure. • The observed excellent measurement-simulation agreement enables the sensitivity analysis of each design for obtaining a deeper insight into the impact of transistor-related physical effects on critical circuit performance parameters. Such studies provide meaningful feedback for process improvement and modeling development.:Table of Contents Kurzfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 List of symbols and acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2 Technology 7 2.1 Fabrication Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.1 SiGe HBT performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.1.2 B11HFC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.1.3 SG13G2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.1.4 SG13D7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 2.2 Commonly Used Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.1 Grounded-sidewall-shielded microstrip line . . . . . . . . . . . . . . . . . . 12 2.2.2 Zero-impedance Transmission Line . . . . . . . . . . . . . . . . . . . . . . 15 2.2.3 Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2.3.1 Active Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.2.3.2 Passive Balun . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3 Low-power Low-noise Amplifiers 25 3.1 173-207 GHz Ultra-low-power Amplifier . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.1 Topology Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2 Bias Dependency of the Small-signal Performance . . . . . . . . . . . . . 27 3.1.2.1 Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.1.2.2 Bias vs Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.1.2.3 Bias vs Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.1.2.4 Bias vs Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.1.3 Bias selection and Device sizing . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3.1 Bias Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.1.3.2 Device Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.1.4 Performance Enhancement Technologies . . . . . . . . . . . . . . . . . . . 41 3.1.4.1 Gm-boosting Inductors . . . . . . . . . . . . . . . . . . . . . . . 41 3.1.4.2 Stability Enhancement . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.4.3 Noise Improvement . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.1.5 Circuit Realization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.5.1 Layout Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.1.5.2 Inductors Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.1.5.3 Dual-band Matching Network . . . . . . . . . . . . . . . . . . . 48 3.1.5.4 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . 50 3.1.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.1 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.2 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 51 3.1.6.3 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.2 72-108 GHz Low-Power Tunable Amplifier . . . . . . . . . . . . . . . . . . . . . . 55 3.2.1 Configuration, Sizing, and Bias Tuning Range . . . . . . . . . . . . . . . . 55 3.2.2 Regional Matching Network . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2.1 Impedance Variation . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.2.2.2 Regional Matching Network Design . . . . . . . . . . . . . . . . 60 3.2.3 Circuit Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 3.2.4.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 3.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4 Low-power Down-conversion Mixers 73 4.1 97 GHz Low-power Down-conversion Mixer . . . . . . . . . . . . . . . . . . . . . 74 4.1.1 Mixer Design and Implementation . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1.1 Mixer Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.1.1.2 Bias Selection and Device Sizing . . . . . . . . . . . . . . . . . . 77 4.1.1.3 Mixer Implementation . . . . . . . . . . . . . . . . . . . . . . . . 79 4.1.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.2.1 Measurement Results . . . . . . . . . . . . . . . . . . . . . . . . 80 4.1.2.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 4.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 5 Low-power Multipliers 87 5.1 General Design Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 5.2 56-66 GHz Low-power Frequency Quadrupler . . . . . . . . . . . . . . . . . . . . 89 5.3 172-201 GHz Low-power Frequency Tripler . . . . . . . . . . . . . . . . . . . . . 93 5.4 176-193 GHz Low-power ×12 Frequency Multiplier . . . . . . . . . . . . . . . . . 96 5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 6 Low-power Receivers 101 6.1 Receiver Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 6.2 LO Chain (×12) Integrated 190 GHz Low-Power Receiver . . . . . . . . . . . . . 104 6.2.1 Receiver Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.2.2 Low-power Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2.3 Building Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.3.1 LNA and LO DA . . . . . . . . . . . . . . . . . . . . . . . . . . 108 6.2.3.2 Tunable Mixer and IF BA . . . . . . . . . . . . . . . . . . . . . 111 6.2.3.3 65 GHz (V-band) Quadrupler . . . . . . . . . . . . . . . . . . . 116 6.2.3.4 G-band Tripler . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.2.4 Receiver Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 123 6.2.5 Measurement Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 6.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 7 Conclusions 133 7.1 Summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 Bibliography 135 List of Figures 149 List of Tables 157 A Derivation of the Gm 159 A.1 Gm of standard cascode stage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 A.2 Gm of cascode stage with Lcas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 A.3 Gm of cascode stage with Lb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 B Derivation of Yin in the stability analysis 163 C Derivation of Zin and Zout 165 C.1 Zin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165 C.2 Zout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 D Derivation of the cascaded oP1dB 169 E Table of element values for the designed circuits 17

    Integrated phased array systems in silicon

    Get PDF
    Silicon offers a new set of possibilities and challenges for RF, microwave, and millimeter-wave applications. While the high cutoff frequencies of the SiGe heterojunction bipolar transistors and the ever-shrinking feature sizes of MOSFETs hold a lot of promise, new design techniques need to be devised to deal with the realities of these technologies, such as low breakdown voltages, lossy substrates, low-Q passives, long interconnect parasitics, and high-frequency coupling issues. As an example of complete system integration in silicon, this paper presents the first fully integrated 24-GHz eight-element phased array receiver in 0.18-μm silicon-germanium and the first fully integrated 24-GHz four-element phased array transmitter with integrated power amplifiers in 0.18-μm CMOS. The transmitter and receiver are capable of beam forming and can be used for communication, ranging, positioning, and sensing applications

    A 40-GHz Load Modulated Balanced Power Amplifier using Unequal Power Splitter and Phase Compensation Network in 45-nm SOI CMOS

    Get PDF
    © 2023 IEEE - All rights reserved. This is the accepted manuscript version of an article which has been published in final form at https://doi.org/10.1109/TCSI.2023.3282731 ​​​​​​​In this work, a ten-way power-combined poweramplifier is designed using a load modulated balanced amplifier(LMBA)-based architecture. To provide the required magnitudeand phase controls between the main and control-signal paths ofthe LMBA, an unequal power splitter and a phase compensationnetwork are proposed. As proof of concept, the designed poweramplifier is implemented in a 45-nm SOI CMOS process. At 40GHz, it delivers a 25.1 dBm Psat with a peak power-addedefficiency (PAE) of 27.9%. At 6-dB power back-off level, itachieves 1.39 times drain efficiency enhancement over an idealClass-B power amplifier. Using a 200-MHz single-carrier 64-QAMsignal, the designed amplifier delivers an average output power of16.5 dBm with a PAE of 13.1% at an EVMrms of -23.9 dB andACPR of -25.3 dBc. The die size, including all testing pads, is only1.92 mm2. To the best of the authors’ knowledge, compared withthe other recently published silicon-based LMBAs, this designachieves the highest Psat.Peer reviewe

    Millimeter-Wave Super-Regenerative Receivers for Wireless Communication and Radar

    Get PDF
    Today’s world is becoming increasingly automated and interconnected with billions of smart devices coming online, leading to a steep rise in energy consumption from small microelectronics. This coincides with an urgent push to transform global energy production to green energies, causing disruptions and energy shortages, and making the case for efficient energy use ever more pressing. Two major areas where high growth is expected are the fields of wireless communication and radar sensors. Millimeter-wave frequency bands are planned for fifth-generation (5G) and sixth-generation (6G) cellular communication standards, as well as automotive frequency-modulated continuous wave (FMCW) radar systems for driving assistance and automation. Fast silicon-based technologies enable these advances by operating at high maximum frequencies, such as the silicon-germanium (SiGe) heterojunction bipolar transistor (HBT) technologies. However, even the fastest transistors suffer from low and energy expensive gains at millimeter-wave frequencies. Rather than incremental improvements in circuit efficiency using conventional approaches, a disruptive revolution for green microelectronics could be enabled by exploring the low-power benefits of the super-regenerative receiver for some applications. The super-regenerative receiver uses a regenerative oscillator circuit to increase the gain by positive feedback, through coupling energy from the output back into the input. Careful bias and control of the circuit enables a very large gain from a small number of transistors and a very low energy dissipation. Thus, the super-regenerative oscillator could be used to replace amplifier circuits in high data rate wireless communication systems, or as active reflectors to increase the range of FMCW radar systems, greatly reducing the power consumption. The work in this thesis presents fundamental scientific research into the topic of energy-efficient millimeter-wave super-regenerative receivers for use in civilian wireless communication and radar applications. This research work covers the theory, analysis, and simulations, all the way up to the proof of concept, hardware realization, and experimental characterization. Analysis and modeling of regenerative oscillator circuits is presented and used to improve the understanding of the circuit operation, as well as design goals according to the specific application needs. Integrated circuits are investigated and characterized as a proof of concept for a high data rate wireless communication system operating between 140–220 GHz, and an automotive radar system operating at 60 GHz. Amplitude and phase regeneration capabilities for complex modulation are investigated, and principles for spectrum characterization are derived. The circuits are designed and fabricated in a 130 nm SiGe HBT technology, combining bipolar and complementary metal-oxide semiconductor (BiCMOS) transistors. To prove the feasibility of the research concepts, the work achieves a wireless communication link at 16 Gbit/s over 20 cm distance with quadrature amplitude modulation (QAM), which is a world record for the highest data rate ever reported in super-regenerative circuits. This was powered by a super-regenerative oscillator circuit operating at 180 GHz and providing 58 dB of gain. Energy efficiency is also considerably high, drawing 8.8 mW of dc power consumption, which corresponds to a highly efficient 0.6 pJ/bit. Packaging and module integration innovations were implemented for the system experiments, and additional broadband circuits were investigated to generate custom quench waveforms to further enhance the data rate. For radar active reflectors, a regenerative gain of 80 dB is achieved at 60 GHz from a single circuit, which is the best in its frequency range, despite a low dc power consumption of 25 mW

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-µm SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86º, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption

    Efficient and Linear CMOS Power Amplifier and Front-end Design for Broadband Fully-Integrated 28-GHz 5G Phased Arrays

    Get PDF
    Demand for data traffic on mobile networks is growing exponentially with time and on a global scale. The emerging fifth-generation (5G) wireless standard is being developed with millimeter-wave (mm-Wave) links as a key technological enabler to address this growth by a 2020 time frame. The wireless industry is currently racing to deploy mm-Wave mobile services, especially in the 28-GHz band. Previous widely-held perceptions of fundamental propagation limitations were overcome using phased arrays. Equally important for success of 5G is the development of low-power, broadband user equipment (UE) radios in commercial-grade technologies. This dissertation demonstrates design methodologies and circuit techniques to tackle the critical challenge of key phased array front-end circuits in low-cost complementary metal oxide semiconductor (CMOS) technology. Two power amplifier (PA) proof-of-concept prototypes are implemented in deeply scaled 28- nm and 40-nm CMOS processes, demonstrating state-of-the-art linearity and efficiency for extremely broadband communication signals. Subsequently, the 40 nm PA design is successfully embedded into a low-power fully-integrated transmit-receive front-end module. The 28 nm PA prototype in this dissertation is the first reported linear, bulk CMOS PA targeting low-power 5G mobile UE integrated phased array transceivers. An optimization methodology is presented to maximizing power added efficiency (PAE) in the PA output stage at a desired error vector magnitude (EVM) and range to address challenging 5G uplink requirements. Then, a source degeneration inductor in the optimized output stage is shown to further enable its embedding into a two-stage transformer-coupled PA. The inductor helps by broadening inter-stage impedance matching bandwidth, and helping to reduce distortion. Designed and fabricated in 1P7M 28 nm bulk CMOS and using a 1 V supply, the PA achieves +4.2 dBm/9% measured Pout/PAE at −25 dBc EVM for a 250 MHz-wide, 64-QAM orthogonal frequency division multiplexing (OFDM) signal with 9.6 dB peak-to-average power ratio (PAPR). The PA also achieves 35.5%/10% PAE for continuous wave signals at saturation/9.6dB back-off from saturation. To the best of the author’s knowledge, these are the highest measured PAE values among published K- and K a-band CMOS PAs to date. To drastically extend the communication bandwidth in 28 GHz-band UE devices, and to explore the potential of CMOS technology for more demanding access point (AP) devices, the second PA is demonstrated in a 40 nm process. This design supports a signal radio frequency bandwidth (RFBW) >3× the state-of-the-art without degrading output power (i.e. range), PAE (i.e. battery life), or EVM (i.e. amplifier fidelity). The three-stage PA uses higher-order, dual-resonance transformer matching networks with bandwidths optimized for wideband linearity. Digital gain control of 9 dB range is integrated for phased array operation. The gain control is a needed functionality, but it is largely absent from reported high-performance mm-Wave PAs in the literature. The PA is fabricated in a 1P6M 40 nm CMOS LP technology with 1.1 V supply, and achieves Pout/PAE of +6.7 dBm/11% for an 8×100 MHz carrier aggregation 64-QAM OFDM signal with 9.7 dB PAPR. This PA therefore is the first to demonstrate the viability of CMOS technology to address even the very challenging 5G AP/downlink signal bandwidth requirement. Finally, leveraging the developed PA design methodologies and circuits, a low power transmit-receive phased array front-end module is fully integrated in 40 nm technology. In transmit-mode, the front-end maintains the excellent performance of the 40 nm PA: achieving +5.5 dBm/9% for the same 8×100 MHz carrier aggregation signal above. In receive-mode, a 5.5 dB noise figure (NF) and a minimum third-order input intercept point (IIP₃) of −13 dBm are achieved. The performance of the implemented CMOS frontend is comparable to state-of-the-art publications and commercial products that were very recently developed in silicon germanium (SiGe) technologies for 5G communication

    A Millimeter-Wave Coexistent RFIC Receiver Architecture in 0.18-µm SiGe BiCMOS for Radar and Communication Systems

    Get PDF
    Innovative circuit architectures and techniques to enhance the performance of several key BiCMOS RFIC building blocks applied in radar and wireless communication systems operating at the millimeter-wave frequencies are addressed in this dissertation. The former encapsulates the development of an advanced, low-cost and miniature millimeter-wave coexistent current mode direct conversion receiver for short-range, high-resolution radar and high data rate communication systems. A new class of broadband low power consumption active balun-LNA consisting of two common emitters amplifiers mutually coupled thru an AC stacked transformer for power saving and gain boosting. The active balun-LNA exhibits new high linearity technique using a constant gm cell transconductance independent of input-outputs variations based on equal emitters’ area ratios. A novel multi-stages active balun-LNA with innovative technique to mitigate amplitude and phase imbalances is proposed. The new multi-stages balun-LNA technique consists of distributed feed-forward averaging recycles correction for amplitude and phase errors and is insensitive to unequal paths parasitic from input to outputs. The distributed averaging recycles correction technique resolves the amplitude and phase errors residuals in a multi-iterative process. The new multi-stages balun-LNA averaging correction technique is frequency independent and can perform amplitude and phase calibrations without relying on passive lumped elements for compensation. The multi-stage balun-LNA exhibits excellent performance from 10 to 50 GHz with amplitude and phase mismatches less than 0.7 dB and 2.86º, respectively. Furthermore, the new multi-stages balun-LNA operates in current mode and shows high linearity with low power consumption. The unique balun-LNA design can operates well into mm-wave regions and is an integral block of the mm-wave radar and communication systems. The integration of several RFIC blocks constitutes the broadband millimeter-wave coexistent current mode direct conversion receiver architecture operating from 22- 44 GHz. The system and architectural level analysis provide a unique understanding into the receiver characteristics and design trade-offs. The RF front-end is based on the broadband multi-stages active balun-LNA coupled into a fully balanced passive mixer with an all-pass in-phase/quadrature phase generator. The trans-impedance amplifier converts the input signal current into a voltage gain at the outputs. Simultaneously, the high power input signal current is channelized into an anti-aliasing filter with 20 dB rejection for out of band interferers. In addition, the dissertation demonstrates a wide dynamic range system with small die area, cost effective and very low power consumption
    corecore