555 research outputs found

    A Fully-Integrated Reconfigurable Dual-Band Transceiver for Short Range Wireless Communications in 180 nm CMOS

    Get PDF
    © 2015 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.A fully-integrated reconfigurable dual-band (760-960 MHz and 2.4-2.5 GHz) transceiver (TRX) for short range wireless communications is presented. The TRX consists of two individually-optimized RF front-ends for each band and one shared power-scalable analog baseband. The sub-GHz receiver has achieved the maximum 75 dBc 3rd-order harmonic rejection ratio (HRR3) by inserting a Q-enhanced notch filtering RF amplifier (RFA). In 2.4 GHz band, a single-ended-to-differential RFA with gain/phase imbalance compensation is proposed in the receiver. A ΣΔ fractional-N PLL frequency synthesizer with two switchable Class-C VCOs is employed to provide the LOs. Moreover, the integrated multi-mode PAs achieve the output P1dB (OP1dB) of 16.3 dBm and 14.1 dBm with both 25% PAE for sub-GHz and 2.4 GHz bands, respectively. A power-control loop is proposed to detect the input signal PAPR in real-time and flexibly reconfigure the PA's operation modes to enhance the back-off efficiency. With this proposed technique, the PAE of the sub-GHz PA is improved by x3.24 and x1.41 at 9 dB and 3 dB back-off powers, respectively, and the PAE of the 2.4 GHz PA is improved by x2.17 at 6 dB back-off power. The presented transceiver has achieved comparable or even better performance in terms of noise figure, HRR, OP1dB and power efficiency compared with the state-of-the-art.Peer reviewe

    A 0.1–5.0 GHz flexible SDR receiver with digitally assisted calibration in 65 nm CMOS

    Get PDF
    © 2017 Elsevier Ltd. All rights reserved.A 0.1–5.0 GHz flexible software-defined radio (SDR) receiver with digitally assisted calibration is presented, employing a zero-IF/low-IF reconfigurable architecture for both wideband and narrowband applications. The receiver composes of a main-path based on a current-mode mixer for low noise, a high linearity sub-path based on a voltage-mode passive mixer for out-of-band rejection, and a harmonic rejection (HR) path with vector gain calibration. A dual feedback LNA with “8” shape nested inductor structure, a cascode inverter-based TCA with miller feedback compensation, and a class-AB full differential Op-Amp with Miller feed-forward compensation and QFG technique are proposed. Digitally assisted calibration methods for HR, IIP2 and image rejection (IR) are presented to maintain high performance over PVT variations. The presented receiver is implemented in 65 nm CMOS with 5.4 mm2 core area, consuming 9.6–47.4 mA current under 1.2 V supply. The receiver main path is measured with +5 dB m/+5dBm IB-IIP3/OB-IIP3 and +61dBm IIP2. The sub-path achieves +10 dB m/+18dBm IB-IIP3/OB-IIP3 and +62dBm IIP2, as well as 10 dB RF filtering rejection at 10 MHz offset. The HR-path reaches +13 dB m/+14dBm IB-IIP3/OB-IIP3 and 62/66 dB 3rd/5th-order harmonic rejection with 30–40 dB improvement by the calibration. The measured sensitivity satisfies the requirements of DVB-H, LTE, 802.11 g, and ZigBee.Peer reviewedFinal Accepted Versio

    A 0.8 V T Network-Based 2.6 GHz Downconverter RFIC

    Get PDF
    A 2.6 GHz downconverter RFIC is designed and implemented using a 0.18 μm CMOS standard process. An important goal of the design is to achieve the high linearity that is required in WiMAX systems with a low supply voltage. A passive T phase-shift network is used as an RF input stage in a Gilbert cell to reduce supply voltage. A single supply voltage of 0.8 V is used with a power consumption of 5.87 mW. The T network-based downconverter achieves a conversion gain (CG) of 5 dB, a single-sideband noise figure (NF) of 16.16 dB, an RF-to-IF isolation of greater than 20 dB, and an input-referred third-order intercept point (IIP3) of 1 dBm when the LO power of -13 dBm is applied

    Low-power CMOS front-ends for wireless personal area networks

    Get PDF
    The potential of implementing subthreshold radio frequency circuits in deep sub-micron CMOS technology was investigated for developing low-power front-ends for wireless personal area network (WPAN) applications. It was found that the higher transconductance to bias current ratio in weak inversion could be exploited in developing low-power wireless front-ends, if circuit techniques are employed to mitigate the higher device noise in subthreshold region. The first fully integrated subthreshold low noise amplifier was demonstrated in the GHz frequency range requiring only 260 μW of power consumption. Novel subthreshold variable gain stages and down-conversion mixers were developed. A 2.4 GHz receiver, consuming 540 μW of power, was implemented using a new subthreshold mixer by replacing the conventional active low noise amplifier by a series-resonant passive network that provides both input matching and voltage amplification. The first fully monolithic subthreshold CMOS receiver was also implemented with integrated subthreshold quadrature LO (Local Oscillator) chain for 2.4 GHz WPAN applications. Subthreshold operation, passive voltage amplification, and various low-power circuit techniques such as current reuse, stacking, and differential cross coupling were combined to lower the total power consumption to 2.6 mW. Extremely compact resistive feedback CMOS low noise amplifiers were presented as a cost-effective alternative to narrow band LNAs using high-Q inductors. Techniques to improve linearity and reduce power consumption were presented. The combination of high linearity, low noise figure, high broadband gain, extremely small die area and low power consumption made the proposed LNA architecture a compelling choice for many wireless applications.Ph.D.Committee Chair: Laskar, Joy; Committee Member: Chakraborty, Sudipto; Committee Member: Chang, Jae Joon; Committee Member: Divan, Deepakraj; Committee Member: Kornegay, Kevin; Committee Member: Tentzeris, Emmanoui

    Survey on individual components for a 5 GHz receiver system using 130 nm CMOS technology

    Get PDF
    La intención de esta tesis es recopilar información desde un punto de vista general sobre los diferentes tipos de componentes utilizados en un receptor de señales a 5 GHz utilizando tecnología CMOS. Se ha realizado una descripción y análisis de cada uno de los componentes que forman el sistema, destacando diferentes tipos de configuraciones, figuras de mérito y otros parámetros. Se muestra una tabla resumen al final de cada sección, comparando algunos diseños que se han ido presentando a lo largo de los años en conferencias internacionales de la IEEE.The intention of this thesis is to gather information from an overview point about the different types of components used in a 5 GHz receiver using CMOS technology. A review of each of the components that form the system has been made, highlighting different types of configurations, figure of merits and parameters. A summary table is shown at the end of each section, comparing many designs that have been presented over the years at international conferences of the IEEE.Departamento de Ingeniería Energética y FluidomecánicaGrado en Ingeniería en Electrónica Industrial y Automátic

    Design of a RF communication receiver front-end for ultra-low power and voltage applications in a FDSOI 28nm technology

    Get PDF
    The advances in the semiconductor and wireless industry have enabled the expansion of new paradigms, which have given rise to concepts like Internet of Things (IoT). Apart from qualities like size, speed or cost, the ever-increasing demand for autonomy focuses all design efforts in the minimization of power consumption. Scaling technologies and the request to reduce power consumption have pushed designers towards lower supply voltages. Despite the fact that technology scalability allows for faster transistors, radio-frequency (RF) integrated circuit (IC) design accuses the reduction of the voltage supply through frequency response degradation, which significantly deteriorates the overall performance. Analog and RF circuits in highend applications require substantial gate voltage overdrive to maintain device speed, which further complicates the design due to the reduction of voltage headroom. As a consequence, the necessity to develop circuit topologies capable to deal with low-power and low-voltage stringent constraints well suited to applications requiring long battery life and low cost emerges. This work aims to implement a low-noise amplifier and mixer stages of a radio-frequency receiver front-end working under an ultra-low power (< 100 ?W) and ultra-low voltage (< 0.8V) scenario while targeting decent overall performance. To cope with the stringent power requirements, 28nm FD-SOI technology will be used to take maximum profit of aggressive forward body bias and enhance transistor performance

    Receiver Front-Ends in CMOS with Ultra-Low Power Consumption

    Get PDF
    Historically, research on radio communication has focused on improving range and data rate. In the last decade, however, there has been an increasing demand for low power and low cost radios that can provide connectivity with small devices around us. They should be able to offer basic connectivity with a power consumption low enough to function extended periods of time on a single battery charge, or even energy scavenged from the surroundings. This work is focused on the design of ultra-low power receiver front-ends intended for a receiver operating in the 2.4GHz ISM band, having an active power consumption of 1mW and chip area of 1mm². Low power consumption and small size make it hard to achieve good sensitivity and tolerance to interference. This thesis starts with an introduction to the overall receiver specifications, low power radio and radio standards, front-end and LO generation architectures and building blocks, followed by the four included papers. Paper I demonstrates an inductorless front-end operating at 915MHz, including a frequency divider for quadrature LO generation. An LO generator operating at 2.4GHz is shown in Paper II, enabling a front-end operating above 2GHz. Papers III and IV contain circuits with combined front-end and LO generator operating at or above the full 2.45GHz target frequency. They use VCO and frequency divider topologies that offer efficient operation and low quadrature error. An efficient passive-mixer design with improved suppression of interference, enables an LNA-less design in Paper IV capable of operating without a SAW-filter

    Metodologia Per la Caratterizzazione di amplificatori a basso rumore per UMTS

    Get PDF
    In questo lavoro si presenta una metodologia di progettazione elettronica a livello di sistema, affrontando il problema della caratterizzazione dello spazio di progetto dell' amplificatore a basso rumore costituente il primo stadio di un front end a conversione diretta per UMTS realizzato in tecnologia CMOS con lunghezza di canale .18u. La metodologia è sviluppata al fine di valutare in modo quantititativo le specifiche ottime di sistema per il front-end stesso e si basa sul concetto di Piattaforma Analogica, che prevede la costruzione di un modello di prestazioni per il blocco analogico basato su campionamento statistico di indici di prestazioni del blocco stesso, misurati tramite simulazione di dimensionamenti dei componenti attivi e passivi soddisfacenti un set di equazioni specifico della topologia circuitale. Gli indici di prestazioni vengono successivamente ulizzati per parametrizzare modelli comportamentali utilizzati nelle fasi di ottimizzazione a livello di sistema. Modelli comportamentali atti a rappresentare i sistemi RF sono stati pertanto studiati per ottimizzare la scelta delle metriche di prestazioni. L'ottimizzazione dei set di equazioni atti a selezionare le configurazione di interesse per il campionamento ha al tempo stesso richiesto l'approfondimento dei modelli di dispositivi attivi validi in tutte le regioni di funzionamento, e lo studio dettagliato della progettazione degli amplificatori a basso rumore basati su degenerazione induttiva. Inoltre, il problema della modellizzazione a livello di sistema degli effetti della comunicazione tra LNA e Mixer è stato affrontato proponendo e analizzando diverse soluzioni. Il lavoro ha permesso di condurre un'ottimizzazione del front-end UMTS, giungendo a specifiche ottime a livello di sistema per l'amplificatore stesso

    Simulations of III-V NWFET Double-Balanced Gilbert Cells with an Improved Noise Model

    Get PDF
    III-V nanowire transistors might provide a mean for extending Moore’s law, by overcoming the scaling limitations ultimately facing planar silicon CMOS. These high frequency capable transistors with cut-off frequencies in the terahertz regime are suitable for radio communication. In this project an active double-balanced gilbert cell mixer consisting of nanowire field-effect transistors (NWFETs) was simulated in Cadence Virtuoso using a compact transistor model. The transistor model was extended to take flicker and thermal noise into account, in order to more accurately compare the mixers against state-of-the-art silicon CMOS implementations. The final mixer for 60 GHz showed much greater linearity (0.4 dBm 1 dB compression and 8.5 dBm IIP 3) than previously reported silicon CMOS counterparts. It exhibited a conversion gain of 3.47 dB, a N F DSB of 14.6 dB and a DC power consumption of 8.7 mW.Based on these findings the design requirements for suitable low noise amplifier was discussed
    corecore