21 research outputs found

    2023 Astrophotonics Roadmap: pathways to realizing multi-functional integrated astrophotonic instruments

    Get PDF
    This is the final version. Available on open access from IOP Publishing via the DOI in this recordData availability statement: The data that support the findings of this study are available upon reasonable request from the authors.Photonic technologies offer numerous functionalities that can be used to realize astrophotonic instruments. The most spectacular example to date is the ESO Gravity instrument at the Very Large Telescope in Chile that combines the light-gathering power of four 8 m telescopes through a complex photonic interferometer. Fully integrated astrophotonic devices stand to offer critical advantages for instrument development, including extreme miniaturization when operating at the diffraction-limit, as well as integration, superior thermal and mechanical stabilization owing to the small footprint, and high replicability offering significant cost savings. Numerous astrophotonic technologies have been developed to address shortcomings of conventional instruments to date, including for example the development of photonic lanterns to convert from multimode inputs to single mode outputs, complex aperiodic fiber Bragg gratings to filter OH emission from the atmosphere, complex beam combiners to enable long baseline interferometry with for example, ESO Gravity, and laser frequency combs for high precision spectral calibration of spectrometers. Despite these successes, the facility implementation of photonic solutions in astronomical instrumentation is currently limited because of (1) low throughputs from coupling to fibers, coupling fibers to chips, propagation and bend losses, device losses, etc, (2) difficulties with scaling to large channel count devices needed for large bandwidths and high resolutions, and (3) efficient integration of photonics with detectors, to name a few. In this roadmap, we identify 24 key areas that need further development. We outline the challenges and advances needed across those areas covering design tools, simulation capabilities, fabrication processes, the need for entirely new components, integration and hybridization and the characterization of devices. To realize these advances the astrophotonics community will have to work cooperatively with industrial partners who have more advanced manufacturing capabilities. With the advances described herein, multi-functional integrated instruments will be realized leading to novel observing capabilities for both ground and space based platforms, enabling new scientific studies and discoveries.National Science Foundation (NSF)NAS

    Ultra-low noise, high-frame rate readout design for a 3D-stacked CMOS image sensor

    Get PDF
    Due to the switch from CCD to CMOS technology, CMOS based image sensors have become smaller, cheaper, faster, and have recently outclassed CCDs in terms of image quality. Apart from the extensive set of applications requiring image sensors, the next technological breakthrough in imaging would be to consolidate and completely shift the conventional CMOS image sensor technology to the 3D-stacked technology. Stacking is recent and an innovative technology in the imaging field, allowing multiple silicon tiers with different functions to be stacked on top of each other. The technology allows for an extreme parallelism of the pixel readout circuitry. Furthermore, the readout is placed underneath the pixel array on a 3D-stacked image sensor, and the parallelism of the readout can remain constant at any spatial resolution of the sensors, allowing extreme low noise and a high-frame rate (design) at virtually any sensor array resolution. The objective of this work is the design of ultra-low noise readout circuits meant for 3D-stacked image sensors, structured with parallel readout circuitries. The readout circuit’s key requirements are low noise, speed, low-area (for higher parallelism), and low power. A CMOS imaging review is presented through a short historical background, followed by the description of the motivation, the research goals, and the work contributions. The fundamentals of CMOS image sensors are addressed, as a part of highlighting the typical image sensor features, the essential building blocks, types of operation, as well as their physical characteristics and their evaluation metrics. Following up on this, the document pays attention to the readout circuit’s noise theory and the column converters theory, to identify possible pitfalls to obtain sub-electron noise imagers. Lastly, the fabricated test CIS device performances are reported along with conjectures and conclusions, ending this thesis with the 3D-stacked subject issues and the future work. A part of the developed research work is located in the Appendices.Devido Ă  mudança da tecnologia CCD para CMOS, os sensores de imagem em CMOS tornam se mais pequenos, mais baratos, mais rĂĄpidos, e mais recentemente, ultrapassaram os sensores CCD no que respeita Ă  qualidade de imagem. Para alĂ©m do vasto conjunto de aplicaçÔes que requerem sensores de imagem, o prĂłximo salto tecnolĂłgico no ramo dos sensores de imagem Ă© o de mudar completamente da tecnologia de sensores de imagem CMOS convencional para a tecnologia “3D-stacked”. O empilhamento de chips Ă© relativamente recente e Ă© uma tecnologia inovadora no campo dos sensores de imagem, permitindo vĂĄrios planos de silĂ­cio com diferentes funçÔes poderem ser empilhados uns sobre os outros. Esta tecnologia permite portanto, um paralelismo extremo na leitura dos sinais vindos da matriz de pĂ­xeis. AlĂ©m disso, num sensor de imagem de planos de silĂ­cio empilhados, os circuitos de leitura estĂŁo posicionados debaixo da matriz de pĂ­xeis, sendo que dessa forma, o paralelismo pode manter-se constante para qualquer resolução espacial, permitindo assim atingir um extremo baixo ruĂ­do e um alto debito de imagens, virtualmente para qualquer resolução desejada. O objetivo deste trabalho Ă© o de desenhar circuitos de leitura de coluna de muito baixo ruĂ­do, planeados para serem empregues em sensores de imagem “3D-stacked” com estruturas altamente paralelizadas. Os requisitos chave para os circuitos de leitura sĂŁo de baixo ruĂ­do, rapidez e pouca ĂĄrea utilizada, de forma a obter-se o melhor rĂĄcio. Uma breve revisĂŁo histĂłrica dos sensores de imagem CMOS Ă© apresentada, seguida da motivação, dos objetivos e das contribuiçÔes feitas. Os fundamentos dos sensores de imagem CMOS sĂŁo tambĂ©m abordados para expor as suas caracterĂ­sticas, os blocos essenciais, os tipos de operação, assim como as suas caracterĂ­sticas fĂ­sicas e suas mĂ©tricas de avaliação. No seguimento disto, especial atenção Ă© dada Ă  teoria subjacente ao ruĂ­do inerente dos circuitos de leitura e dos conversores de coluna, servindo para identificar os possĂ­veis aspetos que dificultem atingir a tĂŁo desejada performance de muito baixo ruĂ­do. Por fim, os resultados experimentais do sensor desenvolvido sĂŁo apresentados junto com possĂ­veis conjeturas e respetivas conclusĂ”es, terminando o documento com o assunto de empilhamento vertical de camadas de silĂ­cio, junto com o possĂ­vel trabalho futuro

    Spectral and timing evolution of the black hole transient MAXI J1727-203 with NICER

    Get PDF
    MAXI J1727-203 is a new X-ray transient discovered on 5 June 2018. A hard-to-soft state transition at the beginning of the outburst led to the identification as a black hole candidate. MAXI J1727-203 was monitored with the Neutron Star Interior Composition Explorer (NICER) on an almost daily basis from the beginning of the outburst. We present a spectral and timing analysis of the full outburst of the source, which lasted approximately four months. A preliminary spectral analysis suggest that the accretion disk component can was detected throughout the entire outburst, with temperatures ranging from ~0.4 keV (in the soft state), down to ~0.2 keV near the end of the outburst when the source was in the hard state. The power spectrum in the hard state shows broadband noise up to 10 Hz, with no detection of any quasi-periodic oscillations. We argue that the system's characteristics are not consistent with those expected for a neutron star and that they are particularly reminiscent of the black hole X-ray binaries XTE J1118+480 and Cyg X-1

    SPICA:revealing the hearts of galaxies and forming planetary systems : approach and US contributions

    Get PDF
    How did the diversity of galaxies we see in the modern Universe come to be? When and where did stars within them forge the heavy elements that give rise to the complex chemistry of life? How do planetary systems, the Universe's home for life, emerge from interstellar material? Answering these questions requires techniques that penetrate dust to reveal the detailed contents and processes in obscured regions. The ESA-JAXA Space Infrared Telescope for Cosmology and Astrophysics (SPICA) mission is designed for this, with a focus on sensitive spectroscopy in the 12 to 230 micron range. SPICA offers massive sensitivity improvements with its 2.5-meter primary mirror actively cooled to below 8 K. SPICA one of 3 candidates for the ESA's Cosmic Visions M5 mission, and JAXA has is committed to their portion of the collaboration. ESA will provide the silicon-carbide telescope, science instrument assembly, satellite integration and testing, and the spacecraft bus. JAXA will provide the passive and active cooling system (supporting the
    corecore