406,744 research outputs found

    Compliance between Architecture and Design Models of Component-Based Systems

    Get PDF
    The design of software systems and the models describing it are usually constrained by the intended software architecture. The intended software architecture defines, for example, how components may be grouped or how they may interact. For the sake of maintenance, evolvability, and smooth operation of software systems, it is of great importance to check and guarantee the architectural compliance of the design and the implementation. Due to size and complexity of modern software systems such checks cannot be done manually but require adequate tool support. Unfortunately, current tool support is not flexible enough to cover easily different aspects of architectural compliance checking.This paper outlines an approach to architectural compliance checking in component-based systems based on logic formalisms. Furthermore, the paper describes a prototypical tool that realizes the approach, and its application in a case study

    Open environments to support systems engineering tool integration: A study using the Portable Common Tool Environment (PCTE)

    Get PDF
    A study of computer engineering tool integration using the Portable Common Tool Environment (PCTE) Public Interface Standard is presented. Over a 10-week time frame, three existing software products were encapsulated to work in the Emeraude environment, an implementation of the PCTE version 1.5 standard. The software products used were a computer-aided software engineering (CASE) design tool, a software reuse tool, and a computer architecture design and analysis tool. The tool set was then demonstrated to work in a coordinated design process in the Emeraude environment. The project and the features of PCTE used are described, experience with the use of Emeraude environment over the project time frame is summarized, and several related areas for future research are summarized

    A Parsing Scheme for Finding the Design Pattern and Reducing the Development Cost of Reusable Object Oriented Software

    Full text link
    Because of the importance of object oriented methodologies, the research in developing new measure for object oriented system development is getting increased focus. The most of the metrics need to find the interactions between the objects and modules for developing necessary metric and an influential software measure that is attracting the software developers, designers and researchers. In this paper a new interactions are defined for object oriented system. Using these interactions, a parser is developed to analyze the existing architecture of the software. Within the design model, it is necessary for design classes to collaborate with one another. However, collaboration should be kept to an acceptable minimum i.e. better designing practice will introduce low coupling. If a design model is highly coupled, the system is difficult to implement, to test and to maintain overtime. In case of enhancing software, we need to introduce or remove module and in that case coupling is the most important factor to be considered because unnecessary coupling may make the system unstable and may cause reduction in the system's performance. So coupling is thought to be a desirable goal in software construction, leading to better values for external software qualities such as maintainability, reusability and so on. To test this hypothesis, a good measure of class coupling is needed. In this paper, based on the developed tool called Design Analyzer we propose a methodology to reuse an existing system with the objective of enhancing an existing Object oriented system keeping the coupling as low as possible.Comment: 15 page

    A DIGITAL ENGINEERING CASE STUDY OF AN UNMANNED UNDERWATER VEHICLE

    Get PDF
    Team Icarus created a digital engineering case study based on an unmanned underwater vehicle (UUV) to provide a robust view of developing an architecture using Cameo Systems Modeler by executing the MagicGrid architecture development methodology. The case study includes connecting this architecture model to directly drive several engineering analysis tools (Excel, MATLAB/Simulink, a Computer Aided Design tool) through middle-ware software (ModelCenter MBSE). The design was refined through a design of experiments and is visualized through software tools (ModelCenter Explore). This case study is provided to Naval Surface Warfare Center–Port Hueneme Division (NSWC PHD) to be a supplement to the training of systems engineers and systems logisticians to fill in the gaps of existing trainings. This case study is also provided to Naval Postgraduate School to supplement the education of current and future students on architecture development and digital engineering.Civilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyCivilian, Department of the NavyApproved for public release. Distribution is unlimited

    Reducing the Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study

    Full text link
    Developing robot agnostic software frameworks involves synthesizing the disparate fields of robotic theory and software engineering while simultaneously accounting for a large variability in hardware designs and control paradigms. As the capabilities of robotic software frameworks increase, the setup difficulty and learning curve for new users also increase. If the entry barriers for configuring and using the software on robots is too high, even the most powerful of frameworks are useless. A growing need exists in robotic software engineering to aid users in getting started with, and customizing, the software framework as necessary for particular robotic applications. In this paper a case study is presented for the best practices found for lowering the barrier of entry in the MoveIt! framework, an open-source tool for mobile manipulation in ROS, that allows users to 1) quickly get basic motion planning functionality with minimal initial setup, 2) automate its configuration and optimization, and 3) easily customize its components. A graphical interface that assists the user in configuring MoveIt! is the cornerstone of our approach, coupled with the use of an existing standardized robot model for input, automatically generated robot-specific configuration files, and a plugin-based architecture for extensibility. These best practices are summarized into a set of barrier to entry design principles applicable to other robotic software. The approaches for lowering the entry barrier are evaluated by usage statistics, a user survey, and compared against our design objectives for their effectiveness to users

    Development of a client interface for a methodology independent object-oriented CASE tool : a thesis presented in partial fulfilment of the requirements for the degree of Master of Science in Computer Science at Massey University

    Get PDF
    The overall aim of the research presented in this thesis is the development of a prototype CASE Tool user interface that supports the use of arbitrary methodology notations for the construction of small-scale diagrams. This research is part of the larger CASE Tool project, MOOT (Massey's Object Oriented Tool). MOOT is a meta-system with a client-server architecture that provides a framework within which the semantics and syntax of methodologies can be described. The CASE Tool user interface is implemented in Java so it is as portable as possible and has a consistent look and feel. It has been designed as a client to the rest of the MOOT system (which acts as a server). A communications protocol has been designed to support the interaction between the CASE Tool client and a MOOT server. The user interface design of MOOT must support all possible graphical notations. No assumptions about the types of notations that a software engineer may use can be made. MOOT therefore provides a specification language called NDL for the definition of a methodology's syntax. Hence, the MOOT CASE Tool client described in this thesis is a shell that is parameterised by NDL specifications. The flexibility provided by such a high level of abstraction presents significant challenges in terms of designing effective human-computer interaction mechanisms for the MOOT user interface. Functional and non-functional requirements of the client user interface have been identified and applied during the construction of the prototype. A notation specification that defines the syntax for Coad and Yourdon OOA/OOD has been written in NDL and used as a test case. The thesis includes the iterative evaluation and extension of NDL resulting from the prototype development. The prototype has shown that the current approach to NDL is efficacious, and that the syntax and semantics of a methodology description can successfully be separated. The developed prototype has shown that it is possible to build a simple, non-intrusive, and efficient, yet flexible, useable, and helpful interface for meta-CASE tools. The development of the CASE Tool client, through its generic, methodology independent design, has provided a pilot with which future ideas may be explored

    THE IMPLEMENTATION OF PARAMETRIC DESIGN PRACTICE IN ARCHITECTURE TEACHING – HOW IT CAN BE IMPLEMENTED IN INDONESIA?

    Get PDF
    Parametric design practice is thriving in the realm of architecture for the last decade. This development is caused by the dynamic progress of computational design technology allowing the designer to engage in complex geometry generation and parametric optimization in the design process. The interoperability of parametric design tool with building simulation software is the key in the parametric design trend that enables designers to solve different socio-environmental problems. Considering of its potencies and development, this study investigates how parametric design practice should be implemented in architecture education, especially in the context of Indonesia university. Reflecting on the teaching case studies in different universities, parametric design should be implemented in architecture teaching, starting from advanced 3D modelling and design fabrication practices. A framework of parametric design teaching is proposed, which can be feasibly implemented in the context of Indonesia university where the awareness of parametric design trend is just growing

    Architecture-based Design: A Satellite On-Board Software Case Study

    Get PDF
    In this case study, we apply the architecture-based design approach to the control software of the CubETH satellite. Architectures are a means for ensuring global coordination properties and thus, achieving correctness of complex systems by construction. The design approach comprises three main steps: 1) definition of a domain-specific taxonomy of architecture styles; 2) design of the software model by applying architectures to enforce the required properties; 3) deadlock-freedom analysis of the resulting model. We provide a taxonomy of architecture styles for satellite on-board software, formally defined by architecture diagrams in the BIP component-based framework. We show how architectures are instantiated from the diagrams and applied to a set of atomic components. Deadlock-freedom of the resulting model is verified using the DFinder tool from the BIP tool-set. Finally, we provide additional validation of our approach by using the nuXmv model checker to verify that the properties enforced by the architectures are, indeed, satisfied in the resulting software model

    Consistency in Multi-Viewpoint Architectural Design of Enterprise Information Systems

    Get PDF
    Different stakeholders in the design of an enterprise information system have their own view on that design. To help produce a coherent design this paper presents a framework that aids in specifying relations between such views. To help produce a consistent design the framework also aids in specifying consistency rules that apply to the view relations and in checking the consistency according to those rules. The framework focuses on the higher levels of abstraction in a design, we refer to design at those levels of abstraction as architectural design. The highest level of abstraction that we consider is that of business process design and the lowest level is that of software component design. The contribution of our framework is that it provides a collection of basic concepts that is common to viewpoints in the area of enterprise information systems. These basic concepts aid in relating viewpoints by providing: (i) a common terminology that helps stakeholders to understand each others concepts; and (ii) a basis for defining re-usable consistency rules. In particular we define re-usable rules to check consistency between behavioural views that overlap or are a refinement of each other. We also present an architecture for a tool suite that supports our framework. We show that our framework can be applied, by performing a case study in which we specify the relations and consistency rules between the RM-ODP enterprise, computational and information viewpoints
    • …
    corecore