1,423 research outputs found

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    A Petri Nets Model for Blockchain Analysis

    Full text link
    A Blockchain is a global shared infrastructure where cryptocurrency transactions among addresses are recorded, validated and made publicly available in a peer- to-peer network. To date the best known and important cryptocurrency is the bitcoin. In this paper we focus on this cryptocurrency and in particular on the modeling of the Bitcoin Blockchain by using the Petri Nets formalism. The proposed model allows us to quickly collect information about identities owning Bitcoin addresses and to recover measures and statistics on the Bitcoin network. By exploiting algebraic formalism, we reconstructed an Entities network associated to Blockchain transactions gathering together Bitcoin addresses into the single entity holding permits to manage Bitcoins held by those addresses. The model allows also to identify a set of behaviours typical of Bitcoin owners, like that of using an address only once, and to reconstruct chains for this behaviour together with the rate of firing. Our model is highly flexible and can easily be adapted to include different features of the Bitcoin crypto-currency system

    Philosophy of Blockchain Technology - Ontologies

    Get PDF
    About the necessity and usefulness of developing a philosophy specific to the blockchain technology, emphasizing on the ontological aspects. After an Introduction that highlights the main philosophical directions for this emerging technology, in Blockchain Technology I explain the way the blockchain works, discussing ontological development directions of this technology in Designing and Modeling. The next section is dedicated to the main application of blockchain technology, Bitcoin, with the social implications of this cryptocurrency. There follows a section of Philosophy in which I identify the blockchain technology with the concept of heterotopia developed by Michel Foucault and I interpret it in the light of the notational technology developed by Nelson Goodman as a notational system. In the Ontology section, I present two developmental paths that I consider important: Narrative Ontology, based on the idea of order and structure of history transmitted through Paul Ricoeur's narrative history, and the Enterprise Ontology system based on concepts and models of an enterprise, specific to the semantic web, and which I consider to be the most well developed and which will probably become the formal ontological system, at least in terms of the economic and legal aspects of blockchain technology. In Conclusions I am talking about the future directions of developing the blockchain technology philosophy in general as an explanatory and robust theory from a phenomenologically consistent point of view, which allows testability and ontologies in particular, arguing for the need of a global adoption of an ontological system for develop cross-cutting solutions and to make this technology profitable. CONTENTS: Abstract Introducere Tehnologia blockchain - Proiectare - Modele Bitcoin Filosofia Ontologii - Ontologii narative - Ontologii de intreprindere Concluzii Note Bibliografie DOI: 10.13140/RG.2.2.24510.3360

    Parsec: a state channel for the Internet of Value

    Get PDF
    We propose Parsec, a web-scale State channel for the Internet of Value to exterminate the consensus bottleneck in Blockchain by leveraging a network of state channels which enable to robustly transfer value off-chain. It acts as an infrastructure layer developed on top of Ethereum Blockchain, as a network protocol which allows coherent routing and interlocking channel transfers for trade-off between parties. A web-scale solution for state channels is implemented to enable a layer of value transfer to the internet. Existing network protocol on State Channels include Raiden for Ethereum and Lightning Network for Bitcoin. However, we intend to leverage existing web-scale technologies used by large Internet companies such as Uber, LinkedIn or Netflix. We use Apache Kafka to scale the global payment operation to trillions of operations per day enabling near-instant, low-fee, scalable, and privacy-sustainable payments. Our architecture follows Event Sourcing pattern which solves current issues of payment solutions such as scaling, transfer, interoperability, low-fees, micropayments and to name a few. To the best of knowledge, our proposed model achieve better performance than state-of-the-art lightning network on the Ethereum based (fork) cryptocoins

    Industrial Data Homogenization and Monitoring Scheme with Blockchain Oracles

    Get PDF
    Research efforts on Distributed Ledger Technologies (DLTs) for industrial applications have constantly been increasing over the last years. The use of DLTs in the Industry 4.0 paradigm provides traceability, integrity, and immutability of the generated industrial data. However, Industry 4.0 ecosystems are typically composed of multiple smart factory clusters belonging to several companies, which are immersed in constant interaction with other business partners, clients, or suppliers. In such complex ecosystems, multiple DLTs are necessarily employed to maintain the integrity of the data throughout the whole process, from when the data is generated until it is processed at higher levels. Moreover, industrial data is commonly heterogeneous, which causes compatibility issues, along with security and efficiency issues in the homogenization process. Thus, the data needs to be pre-processed and homogenized in a secure manner before being exploited. Consequently, in this work, we address the issues mentioned above by providing an industrial raw data pre-processing and homogenization process according to a standard data model. We employ decentralized blockchain oracles to guarantee the integrity of the external data during the homogenization process. Hereafter, we design an interoperable plant blockchain for trustworthy storage and processing of the resulting homogenized data across several industrial plants. We also present a prototype implementation of the aforementioned scheme and discuss its effectiveness. Finally, we design a monitoring scheme to overview the usage the performance of the architecture processes and identify possible performance and security issues.This work has been financed by the European Commission through the Horizon Europe program under the IDUNN project (grant agreement number 101021911). It was also partially supported by the Ayudas Cervera para Centros TecnolĂłgicos grant of the Spanish Centre for the Development of Industrial Technology (CDTI) under the project EGIDA (CER-20191012), and by the Basque Country Government under the ELKARTEK program, project ELKARTEK program, project REMEDY - REal tiME control and embeddeD securitY (KK-2021/00091)

    Designing Data Spaces

    Get PDF
    This open access book provides a comprehensive view on data ecosystems and platform economics from methodical and technological foundations up to reports from practical implementations and applications in various industries. To this end, the book is structured in four parts: Part I “Foundations and Contexts” provides a general overview about building, running, and governing data spaces and an introduction to the IDS and GAIA-X projects. Part II “Data Space Technologies” subsequently details various implementation aspects of IDS and GAIA-X, including eg data usage control, the usage of blockchain technologies, or semantic data integration and interoperability. Next, Part III describes various “Use Cases and Data Ecosystems” from various application areas such as agriculture, healthcare, industry, energy, and mobility. Part IV eventually offers an overview of several “Solutions and Applications”, eg including products and experiences from companies like Google, SAP, Huawei, T-Systems, Innopay and many more. Overall, the book provides professionals in industry with an encompassing overview of the technological and economic aspects of data spaces, based on the International Data Spaces and Gaia-X initiatives. It presents implementations and business cases and gives an outlook to future developments. In doing so, it aims at proliferating the vision of a social data market economy based on data spaces which embrace trust and data sovereignty
    • …
    corecore