669 research outputs found

    Utilizing artificial intelligence in perioperative patient flow:systematic literature review

    Get PDF
    Abstract. The purpose of this thesis was to map the existing landscape of artificial intelligence (AI) applications used in secondary healthcare, with a focus on perioperative care. The goal was to find out what systems have been developed, and how capable they are at controlling perioperative patient flow. The review was guided by the following research question: How is AI currently utilized in patient flow management in the context of perioperative care? This systematic literature review examined the current evidence regarding the use of AI in perioperative patient flow. A comprehensive search was conducted in four databases, resulting in 33 articles meeting the inclusion criteria. Findings demonstrated that AI technologies, such as machine learning (ML) algorithms and predictive analytics tools, have shown somewhat promising outcomes in optimizing perioperative patient flow. Specifically, AI systems have proven effective in predicting surgical case durations, assessing risks, planning treatments, supporting diagnosis, improving bed utilization, reducing cancellations and delays, and enhancing communication and collaboration among healthcare providers. However, several challenges were identified, including the need for accurate and reliable data sources, ethical considerations, and the potential for biased algorithms. Further research is needed to validate and optimize the application of AI in perioperative patient flow. The contribution of this thesis is summarizing the current state of the characteristics of AI application in perioperative patient flow. This systematic literature review provides information about the features of perioperative patient flow and the clinical tasks of AI applications previously identified

    The impact of AutoML on the AI development process

    Get PDF

    The natural language processing of radiology requests and reports of chest imaging:Comparing five transformer models’ multilabel classification and a proof-of-concept study

    Get PDF
    Background: Radiology requests and reports contain valuable information about diagnostic findings and indications, and transformer-based language models are promising for more accurate text classification. Methods: In a retrospective study, 2256 radiologist-annotated radiology requests (8 classes) and reports (10 classes) were divided into training and testing datasets (90% and 10%, respectively) and used to train 32 models. Performance metrics were compared by model type (LSTM, Bertje, RobBERT, BERT-clinical, BERT-multilingual, BERT-base), text length, data prevalence, and training strategy. The best models were used to predict the remaining 40,873 cases’ categories of the datasets of requests and reports. Results: The RobBERT model performed the best after 4000 training iterations, resulting in AUC values ranging from 0.808 [95% CI (0.757–0.859)] to 0.976 [95% CI (0.956–0.996)] for the requests and 0.746 [95% CI (0.689–0.802)] to 1.0 [95% CI (1.0–1.0)] for the reports. The AUC for the classification of normal reports was 0.95 [95% CI (0.922–0.979)]. The predicted data demonstrated variability of both diagnostic yield for various request classes and request patterns related to COVID-19 hospital admission data. Conclusion: Transformer-based natural language processing is feasible for the multilabel classification of chest imaging request and report items. Diagnostic yield varies with the information in the requests

    LABRAD : Vol 46, Issue 4 - October 2021

    Get PDF
    Role of Barcoding in a Clinical Laboratory to Reduce Pre-Analytical Errors Congenital Dyserythropoietic Anemia: The Morphological Diagnosis Digital Imaging in Hematology: A New Beginning Metabolomics: Identification of Fatty Acid Oxidation (FAO) Disorders Next-Generation Sequencing for HLA Genotyping Urine Metabolomics to identify Organic Academia Next-Generation Sequencing (NGS) of Solid Tumor Importance of using Genomic Tool in Microbial Identification Radiology Practice in 21st Century: Role of Artificial Intelligence Case Quiz Best of the Recent Past Polaroidhttps://ecommons.aku.edu/labrad/1036/thumbnail.jp
    corecore