272 research outputs found

    Dynamic calibration of current-steering DAC

    Get PDF
    The demand for high-speed communication systems has dramatically increased during the last decades. Working as an interface between the digital and analog world, Digital-to-Analog converters (DACs) are becoming more and more important because they are a key part which limits the accuracy and speed of an overall system. Consequently, the requirements for high-speed and high-accuracy DACs are increasingly demanding. It is well recognized that dynamic performance of the DACs degrades dramatically with increasing input signal frequencies and update rates. The dynamic performance is often characterized by the spurious free dynamic range (SFDR). The SFDR is determined by the spectral harmonics, which are attributable to system nonlinearities.;A new calibration approach is presented in this thesis that compensates for the dynamic errors in performance. In this approach, the nonlinear components of the input dependent and previous input code dependent errors are characterized, and correction codes that can be used to calibrate the DAC for these nonlinearities are stored in a two-dimensional error look-up table. A series of pulses is generated at run time by addressing the error look-up table with the most significant bits of the Boolean input and by using the corresponding output to drive a calibration DAC whose output is summed with the original DAC output. The approach is applied at both the behavioral level and the circuit level in current-steering DAC.;The validity of this approach is verified by simulation. These simulations show that the dynamic nonlinearities can be dramatically reduced with this calibration scheme. The simulation results also show that this calibration approach is robust to errors in both the width and height of calibration pulses.;Experimental measurement results are also provided for a special case of this dynamic calibration algorithm that show that the dynamic performance can be improved through dynamic calibration, provided the mean error values in the table are close to their real values

    High-Accuracy Digital to Analog Converter Dedicated to Sine-Waveform Generator for Avionic Applications

    Get PDF
    RÉSUMÉ De nos jours, malgré les avancées remarquables de la microélectronique, les systèmes avioniques emploient essentiellement des technologies vieillissantes afin de répondre aux normes de sécurité exigeantes des systèmes avioniques. La nouvelle génération d'avionique modulaire intégrée (AMI) des More Electric Aircrafts (MEA), nécessite des architectures de réseaux stables et fiables, employant des modules électroniques intégrables modernes qui restent à être conçus et développés. Suivant cette tendance, une interface générique intelligente pour capteurs (Smart Sensor Interface - SSI), dédiée aux capteurs de position avionique est proposée dans ce mémoire. Le circuit intégré SSI fera partie d'un réseau de capteurs AFDX amélioré et est composé de signaux d'excitation et de modules d'acquisition de données. Les efforts de conception sont concentrés sur l'unité de génération de signaux d'excitation (Excitation Signal Generation - ESG) de la SSI. En tant que lien entre le réseau AFDX et les capteurs de déplacement, l'unité ESG doit générer des signaux sinusoïdaux précis, d'une fréquence allant de 1.5 kHz à 10 kHz. En respectant la programmation de l'interface, nous démontrerons qu'une architecture de générateur de signaux basée sur la mémoire est la seule option qui réponde aux objectifs du design. Le design d'un convertisseur numérique-analogique (CNA) basé sur le principe du sur-échantillonnage et faisant partie du chemin ESG est également présenté dans ce travail. Ce CNA est le noyau d'un générateur de signaux sinusoïdaux versatile conçu pour le système SSI proposé. Un taux d'échantillonnage élevé est utilisé dans ce CNA, de façon à obtenir un rapport signal sur bruit (Signal to Noise Ratio - SNR) élevé. Une analyse de l'impact d'une implémentation carrée et non-carrée de la matrice de sources de courant (Current Source Array - CSA) sur la performance de la séquence de commutation est présentée. Il sera démontré que la considération de tels impacts conduit à la conception de CNA plus précis. Une séquence de commutation optimale pour la taille du CSA conçu, sera introduite. Afin de réduire la taille des plots d'entrées et de sorties de la puce, un convertisseur de données série à parallèle haute-vitesse est inclu dans le CNA. Ainsi, les données d'entrée peuvent être envoyées de façon sérielle à un registre à décalage et appliquées de façon interne au noyau du CNA.----------ABSTRACT Today, despite the astonishing advances in the field of Microelectronics, avionics systems are mostly employing older technologies to guarantee the level of reliability required by stringent safety standards of avionic systems. Toward the new generation of Integrated Modular Avionics (IMA) in More Electric Aircrafts (MEA), reliable and stable network architecture which employs modern integrated electronic modules must be designed and developed. In this trend, a generic Smart Sensor Interface (SSI) for avionics displacement sensors will be proposed in this Master thesis. The integrated SSI circuit will be part of an improved AFDX sensor network and consists of signal excitation and data acquisition paths. The design efforts of this Master thesis will focus on the Excitation Signal Generation (ESG) unit of the SSI. As a link between AFDX network and displacement sensors, the ESG unit should generate pure and accurate sine-waveform with variable frequency between 1.5 kHz and 10 kHz. Respecting the programmability of the interface, it will be shown that a memory-based signal generator architecture is the only choice which supports the design objectives. As part of the ESG path, the detailed design of a 10-bit interpolating digital to analog converter (DAC) will also be presented in this work. The DAC is the core of a versatile sine-waveform generator unit designed for avionics SSI. High-speed sample rate will be used in this segmented current steering DAC in order to achieve a high Signal to Noise Ratio (SNR). In the module level design of the DAC, the impact of square and non-square implementation of the current source array (CSA) on the performance of the switching sequence is introduced. It will be shown that considering such impacts will lead to the design of more accurate DACs. An optimum switching sequence for the designed CSA size will be designed and introduced. In order to reduce the I/O pads of the chip, high-speed serial to parallel converter will be included in the DAC. Thus the input data can be serially sent to the input shift register and internally applied to the DAC core. The DAC was fabricated on 1.2 × 1.2 mm2 chip fabricated using IBM 0.13µm CMOS technology, operating with a supply voltage of 1.2 V. Sourcing a sine wave current with a peak of 1023 µA, the proposed DAC is able to achieve a SNR better than 84 dB in the Nyquist bandwidth of DC to 20 kHz
    corecore