17 research outputs found

    Cybersecurity: Past, Present and Future

    Full text link
    The digital transformation has created a new digital space known as cyberspace. This new cyberspace has improved the workings of businesses, organizations, governments, society as a whole, and day to day life of an individual. With these improvements come new challenges, and one of the main challenges is security. The security of the new cyberspace is called cybersecurity. Cyberspace has created new technologies and environments such as cloud computing, smart devices, IoTs, and several others. To keep pace with these advancements in cyber technologies there is a need to expand research and develop new cybersecurity methods and tools to secure these domains and environments. This book is an effort to introduce the reader to the field of cybersecurity, highlight current issues and challenges, and provide future directions to mitigate or resolve them. The main specializations of cybersecurity covered in this book are software security, hardware security, the evolution of malware, biometrics, cyber intelligence, and cyber forensics. We must learn from the past, evolve our present and improve the future. Based on this objective, the book covers the past, present, and future of these main specializations of cybersecurity. The book also examines the upcoming areas of research in cyber intelligence, such as hybrid augmented and explainable artificial intelligence (AI). Human and AI collaboration can significantly increase the performance of a cybersecurity system. Interpreting and explaining machine learning models, i.e., explainable AI is an emerging field of study and has a lot of potentials to improve the role of AI in cybersecurity.Comment: Author's copy of the book published under ISBN: 978-620-4-74421-

    On the effectiveness of code-reuse-based Android application obfuscation

    Get PDF

    Introductory Computer Forensics

    Get PDF
    INTERPOL (International Police) built cybercrime programs to keep up with emerging cyber threats, and aims to coordinate and assist international operations for ?ghting crimes involving computers. Although signi?cant international efforts are being made in dealing with cybercrime and cyber-terrorism, ?nding effective, cooperative, and collaborative ways to deal with complicated cases that span multiple jurisdictions has proven dif?cult in practic

    Mitigating the imposition of malicious behaviour on code

    Get PDF
    If vulnerabilities in software allow to alter the behaviour of a program, traditional virus scanners do not have a chance because there is no ingress of a malicious program. Even worse, the same, potentially vulnerable software, runs on millions of computers, smart phones, and tablets out there. One program flaw allows for malicious behaviour to be imposed on millions of instances at once. This thesis presents four novel approaches that all mitigate or prevent this type of imposition of malicious behaviour on otherwise benign code. Since attacks have adapted during the writing of this thesis, the counteract techniques presented are tailored towards different stages of the still ongoing cat-and-mouse game and each technique resembles the status quo in defences at that time.Gutartige Programme, welche sich in schädliche verwandeln lassen, stellen eine größere Bedrohung dar, als Programme, die von vornherein bösartig sind. Während bösartige Programme immerhin die klare Absicht des Diebstahls oder der Manipulation von Daten haben, hat ein gutartiges Programm in aller Regel einen Nutzen für den Anwender. Wenn nun aber ein Programmierfehler dazu führen kann, plötzlich das Verhalten eines Programms zu verändern, bleibt dies von traditionellen Virenscanner völlig ungeachtet, weil diese bloß per se schädliche Programme erkennen. Hinzu kommt, dass Software oft weit ver- breitet ist und in identischer Form auf Millionen von Computern Verwendung findet – ein gefundenes Fressen, um Sicherheitslücken millionenfach auszunutzen. Bereits 1972 zeigten Forscher, dass nicht ordnungsgemäß verarbeitete Eingaben eines Programmes dessen Verhalten beliebig ändern können. Programmierfehler, wie beispielsweise das Überschreiten eines Puffers, könnten nachgelagerte Daten überschreiben. Der Morris-Wurm von 1988 zeigte, dass diese Pufferüberläufe gezielt dazu genutzt werden können das Verhalten eines Programms beliebig zu beeinflussen. Laut MITRE Common Weakness Enumeration (CWE) ist diese Art des Angriffs auch im Jahr 2015 noch immer eine der weitverbreitetsten. Diese sog. Laufzeit-Angriffe befinden sich auf Platz 2 ( “OS Command Injection”) und Platz 3 (“classic buffer overflow”) der CWE Rangliste. Sie ermöglichen Angreifern sowohl Eingaben zu steuern, Berechnungen zu verändern oder Ausgaben zu fälschen, beispielsweise mit dem Ziel Online-Banking-Transaktion zu ändern, Spam-Email-Server im Hintergrund zu installieren oder Opfer zu erpressen, indem wertvolle Dateien verschlüsselt werden. Diese Dissertation stellt vier neue Ansätze vor, welche alle auf unterschiedliche Weise bösartige Verhaltensänderungen von eigentlich gutartiger Software ver- hindern. Da auch die Angriffe während des Schreibens dieser Dissertation verbessert wurden, stellen die hier beschriebenen Lösungskandidaten einen iterativen Prozess dar, der über den zeitlichen Verlauf dieser Dissertation in einem stetigen Katz-und-Maus-Spiel stückchenweise verfeinert wurde

    Knowledge modeling of phishing emails

    Get PDF
    This dissertation investigates whether or not malicious phishing emails are detected better when a meaningful representation of the email bodies is available. The natural language processing theory of Ontological Semantics Technology is used for its ability to model the knowledge representation present in the email messages. Known good and phishing emails were analyzed and their meaning representations fed into machine learning binary classifiers. Unigram language models of the same emails were used as a baseline for comparing the performance of the meaningful data. The end results show how a binary classifier trained on meaningful data is better at detecting phishing emails than a unigram language model binary classifier at least using some of the selected machine learning algorithms

    Software Protection and Secure Authentication for Autonomous Vehicular Cloud Computing

    Get PDF
    Artificial Intelligence (AI) is changing every technology we deal with. Autonomy has been a sought-after goal in vehicles, and now more than ever we are very close to that goal. Vehicles before were dumb mechanical devices, now they are becoming smart, computerized, and connected coined as Autonomous Vehicles (AVs). Moreover, researchers found a way to make more use of these enormous capabilities and introduced Autonomous Vehicles Cloud Computing (AVCC). In these platforms, vehicles can lend their unused resources and sensory data to join AVCC. In this dissertation, we investigate security and privacy issues in AVCC. As background, we built our vision of a layer-based approach to thoroughly study state-of-the-art literature in the realm of AVs. Particularly, we examined some cyber-attacks and compared their promising mitigation strategies from our perspective. Then, we focused on two security issues involving AVCC: software protection and authentication. For the first problem, our concern is protecting client’s programs executed on remote AVCC resources. Such a usage scenario is susceptible to information leakage and reverse-engineering. Hence, we proposed compiler-based obfuscation techniques. What distinguishes our techniques, is that they are generic and software-based and utilize the intermediate representation, hence, they are platform agnostic, hardware independent and support different high level programming languages. Our results demonstrate that the control-flow of obfuscated code versions are more complicated making it unintelligible for timing side-channels. For the second problem, we focus on protecting AVCC from unauthorized access or intrusions, which may cause misuse or service disruptions. Therefore, we propose a strong privacy-aware authentication technique for users accessing AVCC services or vehicle sharing their resources with the AVCC. Our technique modifies robust function encryption, which protects stakeholder’s confidentiality and withstands linkability and “known-ciphertexts” attacks. Thus, we utilize an authentication server to search and match encrypted data by performing dot product operations. Additionally, we developed another lightweight technique, based on KNN algorithm, to authenticate vehicles at computationally limited charging stations using its owner’s encrypted iris data. Our security and privacy analysis proved that our schemes achieved privacy-preservation goals. Our experimental results showed that our schemes have reasonable computation and communications overheads and efficiently scalable
    corecore