5,373 research outputs found

    Internet media planning : an optimization model

    Get PDF
    Of the various media vehicles available for advertising, the internet is the latest and the most rapidly growing, emerging as the ideal medium to promote products and services in the global market. In this article, the authors propose an internet media planning model whose main objective is to help advertisers determine the return they obtain from spending on internet advertising. Using available data such as internet page view and advertising performance data, the model contributes to attempts not only to optimize the internet advertising schedule but also to fix the right price for internet advertisements on the basis of the characteristics of the exposure distribution of sites. The authors test the model with data provided by KoreanClick, a Korean market research company that specializes in internet audience measurement. The optimal durations for the subject sites provide some useful insights. The findings contrast with current web media planning practices, and the authors demonstrate the potential savings that could be achieved if their approach were applied.media planning; optimization; advertising repeat exposure; probability distribution; internet

    Inefficiencies in Digital Advertising Markets

    Get PDF
    Digital advertising markets are growing and attracting increased scrutiny. This article explores four market inefficiencies that remain poorly understood: ad effect measurement, frictions between and within advertising channel members, ad blocking, and ad fraud. Although these topics are not unique to digital advertising, each manifests in unique ways in markets for digital ads. The authors identify relevant findings in the academic literature, recent developments in practice, and promising topics for future research

    Google online marketing challenge and research opportunities

    Get PDF
    The Google Online Marketing Challenge is an ongoing collaboration between Google and academics, to give students experiential learning. The Challenge gives student teams US$200 in AdWords, Google’s flagship advertising product, to develop online marketing campaigns for actual businesses. The end result is an engaging in-class exercise that provides students and professors with an exciting and pedagogically rigorous competition. Results from surveys at the end of the Challenge reveal positive appraisals from the three—students, businesses, and professors—main constituents; general agreement between students and instructors regarding learning outcomes; and a few points of difference between students and instructors. In addition to describing the Challenge and its outcomes, this article reviews the postparticipation questionnaires and subsequent datasets. The questionnaires and results are publicly available, and this article invites educators to mine the datasets, share their results, and offer suggestions for future iterations of the Challenge

    Profit maximization through budget allocation in display advertising

    Get PDF
    Online display advertising provides advertisers a unique opportunity to calculate real-time return on investment for advertising campaigns. Based on the target audiences, each advertising campaign is divided into sub campaigns, called ad sets, which all have their individual returns. Consequently, the advertiser faces an optimization problem of how to allocate the advertising budget across ad sets so that the total return on investment is maximized. Performance of each ad set is unknown to the advertiser beforehand. Thus the advertiser risks choosing a suboptimal ad set if allocating budget to the one assumed to be the optimal. On the other hand, the advertiser wastes money when exploring the returns and not allocating budget to the optimal ad set. This exploration vs. exploitation dilemma is known from so called multi-armed bandit problem. Standard multi-armed bandit problem consists of a gambler and multiple gambling-slot machines i.e. bandits. The gambler needs to balance between exploring which of the bandits has the highest rewards and simultaneously maximising the reward by playing the bandit having the highest return. I formalize the budget allocation problem faced by the online advertiser as a batched bandit problem where the bandits have to be played in batches instead of one by one. Based on the previous literature, I propose several allocation policies to solve the budget allocation problem. In addition, I use an extensive real world dataset from over 200 Facebook advertising campaigns to test the performance impact of different allocation policies. My empirical results give evidence that the return on investment of online advertising campaigns can be improved by dynamically allocating budget. So called greedy algorithms, allocating more of the budget to the ad set having the best historical average, seem to perform notable well. I show that the performance can further be improved by dynamically decreasing the exploration budget by time. Another well performing policy is Thompson sampling which allocates budget by sampling return estimates from a prior distribution formed based on historical returns. Upper confidence and probability policies, often proposed in the machine learning literature, don’t seem to apply that well to the real world resource allocation problem. I also contribute to the previous literature by providing evidence that the advertiser should base the budget allocation on observations of the real revenue generating event (e.g. product purchase) instead of using observations of more general events (e.g. clicks of ads). In addition, my research gives evidence that the performance of the allocation policies is dependent on the number of observations the policy has to make the decision based on. This may be an issue in real world applications if the number of available observations is scarce. I believe this issue is not unique to display advertising and consequently propose a future research topic of developing more robust batched bandit algorithms for resource allocation decisions where the rate of return is small

    Keyword Targeting Optimization in Sponsored Search Advertising: Combining Selection and Matching

    Full text link
    In sponsored search advertising (SSA), advertisers need to select keywords and determine matching types for selected keywords simultaneously, i.e., keyword targeting. An optimal keyword targeting strategy guarantees reaching the right population effectively. This paper aims to address the keyword targeting problem, which is a challenging task because of the incomplete information of historical advertising performance indices and the high uncertainty in SSA environments. First, we construct a data distribution estimation model and apply a Markov Chain Monte Carlo method to make inference about unobserved indices (i.e., impression and click-through rate) over three keyword matching types (i.e., broad, phrase and exact). Second, we formulate a stochastic keyword targeting model (BB-KSM) combining operations of keyword selection and keyword matching to maximize the expected profit under the chance constraint of the budget, and develop a branch-and-bound algorithm incorporating a stochastic simulation process for our keyword targeting model. Finally, based on a realworld dataset collected from field reports and logs of past SSA campaigns, computational experiments are conducted to evaluate the performance of our keyword targeting strategy. Experimental results show that, (a) BB-KSM outperforms seven baselines in terms of profit; (b) BB-KSM shows its superiority as the budget increases, especially in situations with more keywords and keyword combinations; (c) the proposed data distribution estimation approach can effectively address the problem of incomplete performance indices over the three matching types and in turn significantly promotes the performance of keyword targeting decisions. This research makes important contributions to the SSA literature and the results offer critical insights into keyword management for SSA advertisers.Comment: 38 pages, 4 figures, 5 table

    Born to trade: a genetically evolved keyword bidder for sponsored search

    Get PDF
    In sponsored search auctions, advertisers choose a set of keywords based on products they wish to market. They bid for advertising slots that will be displayed on the search results page when a user submits a query containing the keywords that the advertiser selected. Deciding how much to bid is a real challenge: if the bid is too low with respect to the bids of other advertisers, the ad might not get displayed in a favorable position; a bid that is too high on the other hand might not be profitable either, since the attracted number of conversions might not be enough to compensate for the high cost per click. In this paper we propose a genetically evolved keyword bidding strategy that decides how much to bid for each query based on historical data such as the position obtained on the previous day. In light of the fact that our approach does not implement any particular expert knowledge on keyword auctions, it did remarkably well in the Trading Agent Competition at IJCAI2009
    • …
    corecore