608 research outputs found

    Finite size scaling approach to dynamic storage allocation problem

    Full text link
    It is demonstrated how dynamic storage allocation algorithms can be analyzed in terms of finite size scaling. The method is illustrated in the three simple cases of the it first-fit, next-fit and it best-fit algorithms, and the system works at full capacity. The analysis is done from two different points of view - running speed and employed memory. In both cases, and for all algorithms, it is shown that a simple scaling function exists and the relevant exponents are calculated. The method can be applied on similar problems as well.Comment: 9 pages, 4 figures, will apear in Physica

    Analysis of data processing systems

    Get PDF
    Mathematical simulation models and software monitoring of multiprogramming computer syste

    Studies of disk arrays tolerating two disk failures and a proposal for a heterogeneous disk array

    Get PDF
    There has been an explosion in the amount of generated data in the past decade. Online access to these data is made possible by large disk arrays, especially in the RAID (Redundant Array of Independent Disks) paradigm. According to the RAID level a disk array can tolerate one or more disk failures, so that the storage subsystem can continue operating with disk failure(s). RAID 5 is a single disk failure tolerant array which dedicates the capacity of one disk to parity information. The content on the failed disk can be reconstructed on demand and written onto a spare disk. However, RAID5 does not provide enough protection for data since the data loss may occur when there is a media failure (unreadable sectors) or a second disk failure during the rebuild process. Due to the high cost of downtime in many applications, two disk failure tolerant arrays, such as RAID6 and EVENODD, have become popular. These schemes use 2/N of the capacity of the array for redundant information in order to tolerate two disk failures. RM2 is another scheme that can tolerate two disk failures, with slightly higher redundancy ratio. However, the performance of these two disk failure tolerant RAID schemes is impaired, since there are two check disks to be updated for each write request. Therefore, their performance, especially when there are disk failure(s), is of interest. In the first part of the dissertation, the operations for the RAID5, RAID6, EVENODD and RM2 schemes are described. A cost model is developed for these RAID schemes by analyzing the operations in various operating modes. This cost model offers a measure of the volume of data being transmitted, and provides adevice-independent comparison of the efficiency of these RAID schemes. Based on this cost model, the maximum throughput of a RAID scheme can be obtained given detailed disk characteristic and RAID configuration. Utilizing M/G/1 queuing model and other favorable modeling assumptions, a queuing analysis to obtain the mean read response time is described. Simulation is used to validate analytic results, as well as to evaluate the RAID systems in analytically intractable cases. The second part of this dissertation describes a new disk array architecture, namely Heterogeneous Disk Array (HDA). The HDA is motivated by a few observations of the trends in storage technology. The HDA architecture allows a disk array to have two forms of heterogeneity: (1) device heterogeneity, i.e., disks of different types can be incorporated in a single HDA; and (2) RAID level heterogeneity, i.e., various RAID schemes can coexist in the same array. The goal of this architecture is (1) utilizing the extra resource (i.e. bandwidth and capacity) introduced by new disk drives in an automated and efficient way; and (2) using appropriate RAID levels to meet the varying availability requirements for different applications. In HDA, each new object is associated with an appropriate RAID level and the allocation is carried out in a way to keep disk bandwidth and capacity utilizations balanced. Design considerations for the data structures of HDA metadata are described, followed by the actual design of the data structures and flowcharts for the most frequent operations. Then a data allocation algorithm is described in detail. Finally, the HDA architecture is prototyped based on the DASim simulation toolkit developed at NJIT and simulation results of an HDA with two RAID levels (RAID 1 and RAIDS) are presented

    Using Rollback Avoidance to Mitigate Failures in Next-Generation Extreme-Scale Systems

    Get PDF
    High-performance computing (HPC) systems enable scientists to numerically model complex phenomena in many important physical systems. The next major milestone in the development of HPC systems is the construction of the first supercomputer capable executing more than an exaflop, 10^18 floating point operations per second. On systems of this scale, failures will occur much more frequently than on current systems. As a result, resilience is a key obstacle to building next-generation extreme-scale systems. Coordinated checkpointing is currently the most widely-used mechanism for handling failures on HPC systems. Although coordinated checkpointing remains effective on current systems, increasing the scale of today\u27s systems to build next-generation systems will increase the cost of fault tolerance as more and more time is taken away from the application to protect against or recover from failure. Rollback avoidance techniques seek to mitigate the cost of checkpoint/restart by allowing an application to continue its execution rather than rolling back to an earlier checkpoint when failures occur. These techniques include failure prediction and preventive migration, replicated computation, fault-tolerant algorithms, and software-based memory fault correction. In this thesis, I examine how rollback avoidance techniques can be used to address failures on extreme-scale systems. Using a combination of analytic modeling and simulation, I evaluate the potential impact of rollback avoidance on these systems. I then present a novel rollback avoidance technique that exploits similarities in application memory. Finally, I examine the feasibility of using this technique to protect against memory faults in kernel memory

    Compression Techniques for the Grid File

    Get PDF
    Computing and Information Scienc

    Virtualization techniques for memory resource exploitation

    Get PDF
    Cloud infrastructures have become indispensable in our daily lives with the rise of cloud-based services offered by companies like Facebook, Google, Amazon and many others. These cloud infrastructures use a large numbers of servers provisioned with their own computing resources. Each of these servers use a piece of software, called the Hypervisor (``HV''), that allows them to create multiple virtual instances of the server's physical computing resources and abstract them into "Virtual Machines'' (VMs). A VM runs an Operating System, which in turn runs the applications. The VMs within the servers generate varying memory demand behavior. When the demand increases, costly operations such as (virtual) disk accesses and/or VM migrations can occur. As a result, it is necessary to optimize the utilization of the local memory resources within a single computing server. However, pressure on the memory resources can still increase, making it necessary to migrate the VM to a different server with larger memory or add more memory to the same server. At this point, it is important to consider that some of the servers in the cloud infrastructure might have memory resources that they are not using. Considering the possibility to make memory available to the server, new architectures have been introduced that provide hardware support to enable servers to share their memory capacity. This thesis presents multiple contributions to the memory management problem. First, it addresses the problem of optimizing memory resources in a virtualized server through different types of memory abstractions. Two full contributions are presented for managing memory within a single server called SmarTmem and CARLEMM. In this respect, a third contribution is also presented, called CAVMem, that works as the foundation for CARLEMM. Second, this thesis presents two contributions for memory capacity aggregation across multiple servers, offering two mechanisms called GV-Tmem and vMCA, this latter being based on GV-Tmem but with significant enhancements. These mechanisms distribute the server's total memory within a single-server and globally across computing servers using a user-space process with high-level memory management policies.Las infraestructuras para la nube se han vuelto indispensables en nuestras vidas diarias con la proliferación de los servicios ofrecidos por compañías como Facebook, Google, Amazon entre otras. Estas infraestructuras utilizan una gran cantidad de servidores proveídos con sus propios recursos computacionales. Cada unos de estos servidores utilizan un software, llamado el Hipervisor (“HV”), que les permite crear múltiples instancias virtuales de los recursos físicos de computación del servidor y abstraerlos en “Máquinas Virtuales” (VMs). Una VM ejecuta un Sistema Operativo (OS), el cual a su vez ejecuta aplicaciones. Las VMs dentro de los servidores generan un comportamiento variable de demanda de memoria. Cuando la demanda de memoria aumenta, operaciones costosas como accesos al disco (virtual) y/o migraciones de VMs pueden ocurrir. Como resultado, es necesario optimizar la utilización de los recursos de memoria locales dentro del servidor. Sin embargo, la demanda por memoria puede seguir aumentando, haciendo necesario que la VM migre a otro servidor o que se añada más memoria al servidor. En este punto, es importante considerar que algunos servidores podrían tener recursos de memoria que no están utilizando. Considerando la posibilidad de hacer más memoria disponible a los servidores que lo necesitan, nuevas arquitecturas de servidores han sido introducidos que brindan el soporte de hardware necesario para habilitar que los servidores puedan compartir su capacidad de memoria. Esta tesis presenta múltiples contribuciones para el problema de manejo de memoria. Primero, se enfoca en el problema de optimizar los recursos de memoria en un servidor virtualizado a través de distintos tipos de abstracciones de memoria. Dos contribuciones son presentadas para administrar memoria de manera automática dentro de un servidor virtualizado, llamadas SmarTmem y CARLEMM. En este contexto, una tercera contribución es presentada, llamada CAVMem, que proporciona los fundamentos para el desarrollo de CARLEMM. Segundo, la tesis presenta dos contribuciones enfocadas en la agregación de capacidad de memoria a través de múltiples servidores, ofreciendo dos mecanismos llamados GV-Tmem y vMCA, siendo este último basado en GV-Tmem pero con mejoras significativas. Estos mecanismos administran la memoria total de un servidor a nivel local y de manera global a lo largo de los servidores de la infraestructura de nube utilizando un proceso de usuario que implementa políticas de manejo de ..

    Virtualization techniques for memory resource exploitation

    Get PDF
    Cloud infrastructures have become indispensable in our daily lives with the rise of cloud-based services offered by companies like Facebook, Google, Amazon and many others. These cloud infrastructures use a large numbers of servers provisioned with their own computing resources. Each of these servers use a piece of software, called the Hypervisor (``HV''), that allows them to create multiple virtual instances of the server's physical computing resources and abstract them into "Virtual Machines'' (VMs). A VM runs an Operating System, which in turn runs the applications. The VMs within the servers generate varying memory demand behavior. When the demand increases, costly operations such as (virtual) disk accesses and/or VM migrations can occur. As a result, it is necessary to optimize the utilization of the local memory resources within a single computing server. However, pressure on the memory resources can still increase, making it necessary to migrate the VM to a different server with larger memory or add more memory to the same server. At this point, it is important to consider that some of the servers in the cloud infrastructure might have memory resources that they are not using. Considering the possibility to make memory available to the server, new architectures have been introduced that provide hardware support to enable servers to share their memory capacity. This thesis presents multiple contributions to the memory management problem. First, it addresses the problem of optimizing memory resources in a virtualized server through different types of memory abstractions. Two full contributions are presented for managing memory within a single server called SmarTmem and CARLEMM. In this respect, a third contribution is also presented, called CAVMem, that works as the foundation for CARLEMM. Second, this thesis presents two contributions for memory capacity aggregation across multiple servers, offering two mechanisms called GV-Tmem and vMCA, this latter being based on GV-Tmem but with significant enhancements. These mechanisms distribute the server's total memory within a single-server and globally across computing servers using a user-space process with high-level memory management policies.Las infraestructuras para la nube se han vuelto indispensables en nuestras vidas diarias con la proliferación de los servicios ofrecidos por compañías como Facebook, Google, Amazon entre otras. Estas infraestructuras utilizan una gran cantidad de servidores proveídos con sus propios recursos computacionales. Cada unos de estos servidores utilizan un software, llamado el Hipervisor (“HV”), que les permite crear múltiples instancias virtuales de los recursos físicos de computación del servidor y abstraerlos en “Máquinas Virtuales” (VMs). Una VM ejecuta un Sistema Operativo (OS), el cual a su vez ejecuta aplicaciones. Las VMs dentro de los servidores generan un comportamiento variable de demanda de memoria. Cuando la demanda de memoria aumenta, operaciones costosas como accesos al disco (virtual) y/o migraciones de VMs pueden ocurrir. Como resultado, es necesario optimizar la utilización de los recursos de memoria locales dentro del servidor. Sin embargo, la demanda por memoria puede seguir aumentando, haciendo necesario que la VM migre a otro servidor o que se añada más memoria al servidor. En este punto, es importante considerar que algunos servidores podrían tener recursos de memoria que no están utilizando. Considerando la posibilidad de hacer más memoria disponible a los servidores que lo necesitan, nuevas arquitecturas de servidores han sido introducidos que brindan el soporte de hardware necesario para habilitar que los servidores puedan compartir su capacidad de memoria. Esta tesis presenta múltiples contribuciones para el problema de manejo de memoria. Primero, se enfoca en el problema de optimizar los recursos de memoria en un servidor virtualizado a través de distintos tipos de abstracciones de memoria. Dos contribuciones son presentadas para administrar memoria de manera automática dentro de un servidor virtualizado, llamadas SmarTmem y CARLEMM. En este contexto, una tercera contribución es presentada, llamada CAVMem, que proporciona los fundamentos para el desarrollo de CARLEMM. Segundo, la tesis presenta dos contribuciones enfocadas en la agregación de capacidad de memoria a través de múltiples servidores, ofreciendo dos mecanismos llamados GV-Tmem y vMCA, siendo este último basado en GV-Tmem pero con mejoras significativas. Estos mecanismos administran la memoria total de un servidor a nivel local y de manera global a lo largo de los servidores de la infraestructura de nube utilizando un proceso de usuario que implementa políticas de manejo de ...Postprint (published version
    corecore