15 research outputs found

    Thin Cap Fibroatheroma Detection in Virtual Histology Images Using Geometric and Texture Features

    Get PDF
    Atherosclerotic plaque rupture is the most common mechanism responsible for a majority of sudden coronary deaths. The precursor lesion of plaque rupture is thought to be a thin cap fibroatheroma (TCFA), or “vulnerable plaque”. Virtual Histology-Intravascular Ultrasound (VH-IVUS) images are clinically available for visualising colour-coded coronary artery tissue. However, it has limitations in terms of providing clinically relevant information for identifying vulnerable plaque. The aim of this research is to improve the identification of TCFA using VH-IVUS images. To more accurately segment VH-IVUS images, a semi-supervised model is developed by means of hybrid K-means with Particle Swarm Optimisation (PSO) and a minimum Euclidean distance algorithm (KMPSO-mED). Another novelty of the proposed method is fusion of different geometric and informative texture features to capture the varying heterogeneity of plaque components and compute a discriminative index for TCFA plaque, while the existing research on TCFA detection has only focused on the geometric features. Three commonly used statistical texture features are extracted from VH-IVUS images: Local Binary Patterns (LBP), Grey Level Co-occurrence Matrix (GLCM), and Modified Run Length (MRL). Geometric and texture features are concatenated in order to generate complex descriptors. Finally, Back Propagation Neural Network (BPNN), kNN (K-Nearest Neighbour), and Support Vector Machine (SVM) classifiers are applied to select the best classifier for classifying plaque into TCFA and Non-TCFA. The present study proposes a fast and accurate computer-aided method for plaque type classification. The proposed method is applied to 588 VH-IVUS images obtained from 10 patients. The results prove the superiority of the proposed method, with accuracy rates of 98.61% for TCFA plaque.This research was funded by Universiti Teknologi Malaysia (UTM) under Research University Grant Vot-02G31, and the Ministry of Higher Education Malaysia (MOHE) under the Fundamental Research Grant Scheme (FRGS Vot-4F551) for the completion of the research. The work and the contribution were also supported by the project Smart Solutions in Ubiquitous Computing Environments, Grant Agency of Excellence, University of Hradec Kralove, Faculty of Informatics and Management, Czech Republic (under ID: UHK-FIM-GE-2018). Furthermore, the research is also partially supported by the Spanish Ministry of Science, Innovation and Universities with FEDER funds in the project TIN2016-75850-R

    Directional edge and texture representations for image processing

    Get PDF
    An efficient representation for natural images is of fundamental importance in image processing and analysis. The commonly used separable transforms such as wavelets axe not best suited for images due to their inability to exploit directional regularities such as edges and oriented textural patterns; while most of the recently proposed directional schemes cannot represent these two types of features in a unified transform. This thesis focuses on the development of directional representations for images which can capture both edges and textures in a multiresolution manner. The thesis first considers the problem of extracting linear features with the multiresolution Fourier transform (MFT). Based on a previous MFT-based linear feature model, the work extends the extraction method into the situation when the image is corrupted by noise. The problem is tackled by the combination of a "Signal+Noise" frequency model, a refinement stage and a robust classification scheme. As a result, the MFT is able to perform linear feature analysis on noisy images on which previous methods failed. A new set of transforms called the multiscale polar cosine transforms (MPCT) are also proposed in order to represent textures. The MPCT can be regarded as real-valued MFT with similar basis functions of oriented sinusoids. It is shown that the transform can represent textural patches more efficiently than the conventional Fourier basis. With a directional best cosine basis, the MPCT packet (MPCPT) is shown to be an efficient representation for edges and textures, despite its high computational burden. The problem of representing edges and textures in a fixed transform with less complexity is then considered. This is achieved by applying a Gaussian frequency filter, which matches the disperson of the magnitude spectrum, on the local MFT coefficients. This is particularly effective in denoising natural images, due to its ability to preserve both types of feature. Further improvements can be made by employing the information given by the linear feature extraction process in the filter's configuration. The denoising results compare favourably against other state-of-the-art directional representations

    Linear Unmixing of Hyperspectral Signals via Wavelet Feature Extraction

    Get PDF
    A pixel in remotely sensed hyperspectral imagery is typically a mixture of multiple electromagnetic radiances from various ground cover materials. Spectral unmixing is a quantitative analysis procedure used to recognize constituent ground cover materials (or endmembers) and obtain their mixing proportions (or abundances) from a mixed pixel. The abundances are typically estimated using the least squares estimation (LSE) method based on the linear mixture model (LMM). This dissertation provides a complete investigation on how the use of appropriate features can improve the LSE of endmember abundances using remotely sensed hyperspectral signals. The dissertation shows how features based on signal classification approaches, such as discrete wavelet transform (DWT), outperform features based on conventional signal representation methods for dimensionality reduction, such as principal component analysis (PCA), for the LSE of endmember abundances. Both experimental and theoretical analyses are reported in the dissertation. A DWT-based linear unmixing system is designed specially for the abundance estimation. The system utilizes the DWT as a pre-processing step for the feature extraction. Based on DWT-based features, the system utilizes the constrained LSE for the abundance estimation. Experimental results show that the use of DWT-based features reduces the abundance estimation deviation by 30-50% on average, as compared to the use of original hyperspectral signals or conventional PCA-based features. Based on the LMM and the LSE method, a series of theoretical analyses are derived to reveal the fundamental reasons why the use of the appropriate features, such as DWT-based features, can improve the LSE of endmember abundances. Under reasonable assumptions, the dissertation derives a generalized mathematical relationship between the abundance estimation error and the endmember separabilty. It is proven that the abundance estimation error can be reduced through increasing the endmember separability. The use of DWT-based features provides a potential to increase the endmember separability, and consequently improves the LSE of endmember abundances. The stability of the LSE of endmember abundances is also analyzed using the concept of the condition number. Analysis results show that the use of DWT-based features not only improves the LSE of endmember abundances, but also improves the LSE stability

    Computer Vision Techniques for Transcatheter Intervention

    Get PDF
    Minimally invasive transcatheter technologies have demonstrated substantial promise for the diagnosis and treatment of cardiovascular diseases. For example, TAVI is an alternative to AVR for the treatment of severe aortic stenosis and TAFA is widely used for the treatment and cure of atrial fibrillation. In addition, catheter-based IVUS and OCT imaging of coronary arteries provides important information about the coronary lumen, wall and plaque characteristics. Qualitative and quantitative analysis of these cross-sectional image data will be beneficial for the evaluation and treatment of coronary artery diseases such as atherosclerosis. In all the phases (preoperative, intraoperative, and postoperative) during the transcatheter intervention procedure, computer vision techniques (e.g., image segmentation, motion tracking) have been largely applied in the field to accomplish tasks like annulus measurement, valve selection, catheter placement control, and vessel centerline extraction. This provides beneficial guidance for the clinicians in surgical planning, disease diagnosis, and treatment assessment. In this paper, we present a systematical review on these state-of-the-art methods.We aim to give a comprehensive overview for researchers in the area of computer vision on the subject of transcatheter intervention. Research in medical computing is multi-disciplinary due to its nature, and hence it is important to understand the application domain, clinical background, and imaging modality so that methods and quantitative measurements derived from analyzing the imaging data are appropriate and meaningful. We thus provide an overview on background information of transcatheter intervention procedures, as well as a review of the computer vision techniques and methodologies applied in this area

    POST-IVUS: A perceptual organisation-aware selective transformer framework for intravascular ultrasound segmentation

    Get PDF
    Intravascular ultrasound (IVUS) is recommended in guiding coronary intervention. The segmentation of coronary lumen and external elastic membrane (EEM) borders in IVUS images is a key step, but the manual process is time-consuming and error-prone, and suffers from inter-observer variability. In this paper, we propose a novel perceptual organisation-aware selective transformer framework that can achieve accurate and robust segmentation of the vessel walls in IVUS images. In this framework, temporal context-based feature encoders extract efficient motion features of vessels. Then, a perceptual organisation-aware selective transformer module is proposed to extract accurate boundary information, supervised by a dedicated boundary loss. The obtained EEM and lumen segmentation results will be fused in a temporal constraining and fusion module, to determine the most likely correct boundaries with robustness to morphology. Our proposed methods are extensively evaluated in non-selected IVUS sequences, including normal, bifurcated, and calcified vessels with shadow artifacts. The results show that the proposed methods outperform the state-of-the-art, with a Jaccard measure of 0.92 for lumen and 0.94 for EEM on the IVUS 2011 open challenge dataset. This work has been integrated into a software QCU-CMS2 to automatically segment IVUS images in a user-friendly environment
    corecore