1,851 research outputs found

    I/O embedding and broadcasting in star interconnection networks

    Full text link
    The issues of communication between a host or central controller and processors, in large interconnection networks are very important and have been studied in the past by several researchers. There is a plethora of problems that arise when processors are asked to exchange information on parallel computers on which processors are interconnected according to a specific topology. In robust networks, it is desirable at times to send (receive) data/control information to (from) all the processors in minimal time. This type of communication is commonly referred to as broadcasting. To speed up broadcasting in a given network without modifying its topology, certain processors called stations can be specified to act as relay agents. In this thesis, broadcasting issues in a star-based interconnection network are studied. The model adopted assumes all-port communication and wormhole switching mechanism. Initially, the problem treated is one of finding the minimum number of stations required to cover all the nodes in the star graph with i-adjacency. We consider 1-, 2-, and 3-adjacencies and determine the upper bound on the number of stations required to cover the nodes for each case. After deriving the number of stations, two algorithms are designed to broadcast the messages first from the host to stations, and then from stations to remaining nodes; In addition, a Binary-based Algorithm is designed to allow routing in the network by directly working on the binary labels assigned to the star graph. No look-up table is consulted during routing and minimum number of bits are used to represent a node label. At the end, the thesis sheds light on another algorithm for routing using parallel paths in the star network

    Star varietal cube: A New Large Scale Parallel Interconnection Network

    Get PDF
    This paper proposes a new interconnection network topology, called the Star varietalcube SVC(n,m), for large scale multicomputer systems. We take advantage of the hierarchical structure of the Star graph network and the Varietal hypercube to obtain an efficient method for constructing the new topology. The Star graph of dimension n and a Varietal hypercube of dimension m are used as building blocks. The resulting network has most of the desirable properties of the Star and Varietal hypercube including recursive structure, partionability, strong connectivity. The diameter of the Star varietal hypercube is about two third of the diameter of the Star-cube. The average distance of the proposed topology is also smaller than that of the Star-cube

    A Quality and Cost Approach for Comparison of Small-World Networks

    Full text link
    We propose an approach based on analysis of cost-quality tradeoffs for comparison of efficiency of various algorithms for small-world network construction. A number of both known in the literature and original algorithms for complex small-world networks construction are shortly reviewed and compared. The networks constructed on the basis of these algorithms have basic structure of 1D regular lattice with additional shortcuts providing the small-world properties. It is shown that networks proposed in this work have the best cost-quality ratio in the considered class.Comment: 27 pages, 16 figures, 1 tabl

    Design and Analysis of Optical Interconnection Networks for Parallel Computation.

    Get PDF
    In this doctoral research, we propose several novel protocols and topologies for the interconnection of massively parallel processors. These new technologies achieve considerable improvements in system performance and structure simplicity. Currently, synchronous protocols are used in optical TDM buses. The major disadvantage of a synchronous protocol is the waste of packet slots. To offset this inherent drawback of synchronous TDM, a pipelined asynchronous TDM optical bus is proposed. The simulation results show that the performance of the proposed bus is significantly better than that of known pipelined synchronous TDM optical buses. Practically, the computation power of the plain TDM protocol is limited. Various extensions must be added to the system. In this research, a new pipelined optical TDM bus for implementing a linear array parallel computer architecture is proposed. The switches on the receiving segment of the bus can be dynamically controlled, which make the system highly reconfigurable. To build large and scalable systems, we need new network architectures that are suitable for optical interconnections. A new kind of reconfigurable bus called segmented bus is introduced to achieve reduced structure simplicity and increased concurrency. We show that parallel architectures based on segmented buses are versatile by showing that it can simulate parallel communication patterns supported by a wide variety of networks with small slowdown factors. New kinds of interconnection networks, the hypernetworks, have been proposed recently. Compared with point-to-point networks, they allow for increased resource-sharing and communication bandwidth utilization, and they are especially suitable for optical interconnects. One way to derive a hypernetwork is by finding the dual of a point-to-point network. Hypercube Q\sb{n}, where n is the dimension, is a very popular point-to-point network. It is interesting to construct hypernetworks from the dual Q\sbsp{n}{*} of hypercube of Q\sb{n}. In this research, the properties of Q\sbsp{n}{*} are investigated and a set of fundamental data communication algorithms for Q\sbsp{n}{*} are presented. The results indicate that the Q\sbsp{n}{*} hypernetwork is a useful and promising interconnection structure for high-performance parallel and distributed computing systems

    Conflict-free star-access in parallel memory systems

    Get PDF
    We study conflict-free data distribution schemes in parallel memories in multiprocessor system architectures. Given a host graph G, the problem is to map the nodes of G into memory modules such that any instance of a template type T in G can be accessed without memory conflicts. A conflict occurs if two or more nodes of T are mapped to the same memory module. The mapping algorithm should: (i) be fast in terms of data access (possibly mapping each node in constant time); (ii) minimize the required number of memory modules for accessing any instance in G of the given template type; and (iii) guarantee load balancing on the modules. In this paper, we consider conflict-free access to star templates. i.e., to any node of G along with all of its neighbors. Such a template type arises in many classical algorithms like breadth-first search in a graph, message broadcasting in networks, and nearest neighbor based approximation in numerical computation. We consider the star-template access problem on two specific host graphs-tori and hypercubes-that are also popular interconnection network topologies. The proposed conflict-free mappings on these graphs are fast, use an optimal or provably good number of memory modules, and guarantee load balancing. (C) 2006 Elsevier Inc. All rights reserved

    Fault-tolerance embedding of rings and arrays in star and pancake graphs

    Full text link
    The star and pancake graphs are useful interconnection networks for connecting processors in a parallel and distributed computing environment. The star network has been widely studied and is shown to possess attactive features like sublogarithmic diameter, node and edge symmetry and high resilience. The star/pancake interconnection graphs, {dollar}S\sb{n}/P\sb{n}{dollar} of dimension n have n! nodes connected by {dollar}{(n-1).n!\over2}{dollar} edges. Due to their large number of nodes and interconnections, they are prone to failure of one or more nodes/edges; In this thesis, we present methods to embed Hamiltonian paths (H-path) and Hamiltonian cycles (H-cycle) in a star graph {dollar}S\sb{n}{dollar} and pancake graph {dollar}P\sb{n}{dollar} in a faulty environment. Such embeddings are important for solving computational problems, formulated for array and ring topologies, on star and pancake graphs. The models considered include single-processor failure, double-processor failure, and multiple-processor failures. All the models are applied to an H-cycle which is formed by visiting all the ({dollar}{n!\over4!})\ S\sb4/P\sb4{dollar}s in an {dollar}S\sb{n}/P\sb{n}{dollar} in a particular order. Each {dollar}S\sb4/P\sb4{dollar} has an entry node where the cycle/path enters that particular {dollar}S\sb4/P\sb4{dollar} and an exit node where the path leaves it. Distributed algorithms for embedding hamiltonian cycle in the presence of multiple faults, are also presented for both {dollar}S\sb{n}{dollar} and {dollar}P\sb{n}{dollar}
    • …
    corecore