6,632 research outputs found

    Scheduling in Large Scale MIMO Downlink Systems

    Get PDF
    This dissertation deals with the problem of scheduling in wireless MIMO (Multiple-Input Multiple-Output) downlink systems. The focus is on the large-scale systems when the number of subscribers is large. In part one, the problem of user selection in MIMO Broadcast channel is studied. An efficient user selection algorithm is proposed and is shown to achieve the sum-rate capacity of the system asymptotically (in terms of the number of users), while requiring (i)~low-complexity precoding scheme of zero-forcing beam-forming at the base station, (ii)~low amount of feedback from the users to the base station, (iii)~low complexity of search. Part two studies the problem of MIMO broadcast channel with partial Channel State Information (CSI) at the transmitter. The necessary and sufficient conditions for the amount of CSI at the transmitter (which is provided to via feedback links from the receivers) in order to achieve the sum-rate capacity of the system are derived. The analysis is performed in various singnal to noise ratio regimes. In part three, the problem of sum-rate maximization in a broadcast channel with large number of users, when each user has a stringent delay constraint, is studied. In this part, a new definition of fairness, called short-term fairness is introduced. A scheduling algorithm is proposed that achieves: (i) Maximum sum-rate throughput and (ii) Maximum short-term fairness of the system, simultaneously, while satisfying the delay constraint for each individual user with probability one. In part four, the sum-rate capacity of MIMO broadcast channel, when the channels are Rician fading, is derived in various scenarios in terms of the value of the Rician factor and the distribution of the specular components of the channel

    Fundamental Limits in MIMO Broadcast Channels

    Get PDF
    This paper studies the fundamental limits of MIMO broadcast channels from a high level, determining the sum-rate capacity of the system as a function of system paramaters, such as the number of transmit antennas, the number of users, the number of receive antennas, and the total transmit power. The crucial role of channel state information at the transmitter is emphasized, as well as the emergence of opportunistic transmission schemes. The effects of channel estimation errors, training, and spatial correlation are studied, as well as issues related to fairness, delay and differentiated rate scheduling

    On X-Channels with Feedback and Delayed CSI

    Full text link
    The sum degrees of freedom (DoF) of the two-user MIMO X-channel is characterized in the presence of output feedback and delayed channel state information (CSI). The number of antennas at each transmitters is assumed to be M and the number of antennas at each of the receivers is assumed to be N. It is shown that the sum DoF of the two-user MIMO X-channel is the same as the sum DoF of a two-user MIMO broadcast channel with 2M transmit antennas, and N antennas at each receiver. Hence, for this symmetric antenna configuration, there is no performance loss in the sum degrees of freedom due to the distributed nature of the transmitters. This result highlights the usefulness of feedback and delayed CSI for the MIMO X-channel. The K-user X-channel with single antenna at each transmitter and each receiver is also studied. In this network, each transmitter has a message intended for each receiver. For this network, it is shown that the sum DoF with partial output feedback alone is at least 2K/(K+1). This lower bound is strictly better than the best lower bound known for the case of delayed CSI assumption for all values of K.Comment: Submitted to IEEE ISIT 2012 on Jan 22, 201

    On the capacity of MIMO broadcast channels with partial side information

    Get PDF
    In multiple-antenna broadcast channels, unlike point-to-point multiple-antenna channels, the multiuser capacity depends heavily on whether the transmitter knows the channel coefficients to each user. For instance, in a Gaussian broadcast channel with M transmit antennas and n single-antenna users, the sum rate capacity scales like Mloglogn for large n if perfect channel state information (CSI) is available at the transmitter, yet only logarithmically with M if it is not. In systems with large n, obtaining full CSI from all users may not be feasible. Since lack of CSI does not lead to multiuser gains, it is therefore of interest to investigate transmission schemes that employ only partial CSI. We propose a scheme that constructs M random beams and that transmits information to the users with the highest signal-to-noise-plus-interference ratios (SINRs), which can be made available to the transmitter with very little feedback. For fixed M and n increasing, the throughput of our scheme scales as MloglognN, where N is the number of receive antennas of each user. This is precisely the same scaling obtained with perfect CSI using dirty paper coding. We furthermore show that a linear increase in throughput with M can be obtained provided that M does not not grow faster than logn. We also study the fairness of our scheduling in a heterogeneous network and show that, when M is large enough, the system becomes interference dominated and the probability of transmitting to any user converges to 1/n, irrespective of its path loss. In fact, using M=αlogn transmit antennas emerges as a desirable operating point, both in terms of providing linear scaling of the throughput with M as well as in guaranteeing fairness

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    On the Capacity Region of Multi-Antenna Gaussian Broadcast Channels with Estimation Error

    Get PDF
    In this paper we consider the effect of channel estimation error on the capacity region of MIMO Gaussian broadcast channels. It is assumed that the receivers and the transmitter have (the same) estimates of the channel coefficients (i.e., the feedback channel is noiseless). We obtain an achievable rate region based on the dirty paper coding scheme. We show that this region is given by the capacity region of a dual multi-access channel with a noise covariance that depends on the transmit power. We explore this duality to give the asymptotic behavior of the sum-rate for a system with a large number of user, i.e., n rarr infin. It is shown that as long as the estimation error is of fixed (w.r.t n) variance, the sum-capacity is of order M log log n, where M is the number of antennas deployed at the transmitter. We further obtain the sum-rate loss due to the estimation error. Finally, we consider a training-based scheme for block fading MISO Gaussian broadcast channels. We find the optimum length of the training interval as well as the optimum power used for training in order to maximize the achievable sum-rate
    corecore