247,516 research outputs found

    Finite-time Singularities in Swampland-related Dark Energy Models

    Full text link
    In this work we shall investigate the singularity structure of the phase space corresponding to an exponential quintessence dark energy model recently related to swampland models. The dynamical system corresponding to the cosmological system is an autonomous polynomial dynamical system, and by using a mathematical theorem we shall investigate whether finite-time singularities can occur in the dynamical system variables. As we demonstrate, the solutions of the dynamical system are non-singular for all cosmic times and this result is general, meaning that the initial conditions corresponding to the regular solutions, belong to a general set of initial conditions and not to a limited set of initial conditions. As we explain, a dynamical system singularity is not directly related to a physical finite-time singularity. Then, by assuming that the Hubble rate with functional form H(t)=f1(t)+f2(t)(t−ts)αH(t)=f_1(t)+f_2(t)(t-t_s)^{\alpha}, is a solution of the dynamical system, we investigate the implications of the absence of finite-time singularities in the dynamical system variables. As we demonstrate, Big Rip and a Type IV singularities can always occur if α2\alpha2 respectively. However, Type II and Type III singularities cannot occur in the cosmological system, if the Hubble rate we quoted is considered a solution of the cosmological system.Comment: EPL Accepte

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    CMBPol Mission Concept Study: Probing Inflation with CMB Polarization

    Get PDF
    We summarize the utility of precise cosmic microwave background (CMB) polarization measurements as probes of the physics of inflation. We focus on the prospects for using CMB measurements to differentiate various inflationary mechanisms. In particular, a detection of primordial B-mode polarization would demonstrate that inflation occurred at a very high energy scale, and that the inflaton traversed a super-Planckian distance in field space. We explain how such a detection or constraint would illuminate aspects of physics at the Planck scale. Moreover, CMB measurements can constrain the scale-dependence and non-Gaussianity of the primordial fluctuations and limit the possibility of a significant isocurvature contribution. Each such limit provides crucial information on the underlying inflationary dynamics. Finally, we quantify these considerations by presenting forecasts for the sensitivities of a future satellite experiment to the inflationary parameters.Comment: 107 pages, 14 figures, 17 tables; Inflation Working Group contribution to the CMBPol Mission Concept Study; v2: typos fixed and references adde
    • …
    corecore