305 research outputs found

    Traffic Light Control Using Deep Policy-Gradient and Value-Function Based Reinforcement Learning

    Full text link
    Recent advances in combining deep neural network architectures with reinforcement learning techniques have shown promising potential results in solving complex control problems with high dimensional state and action spaces. Inspired by these successes, in this paper, we build two kinds of reinforcement learning algorithms: deep policy-gradient and value-function based agents which can predict the best possible traffic signal for a traffic intersection. At each time step, these adaptive traffic light control agents receive a snapshot of the current state of a graphical traffic simulator and produce control signals. The policy-gradient based agent maps its observation directly to the control signal, however the value-function based agent first estimates values for all legal control signals. The agent then selects the optimal control action with the highest value. Our methods show promising results in a traffic network simulated in the SUMO traffic simulator, without suffering from instability issues during the training process

    Recent developments and future trends of industrial agents

    Get PDF
    The agent technology provides a new way to design and engineer control solutions based on the decentralization of control over distributed structures, addressing the current requirements for modern control systems in industrial domains. This paper presents the current situation of the development and deployment of agent technology, discussing the initiatives and the current trends faced for a wider dissemination and industrial adoption, based on the work that is being carried out by the IEEE IES Technical Committee on Industrial Agents

    A process model for the design of multi-agent systems

    Get PDF
    In this paper, we propose a pragmatic process model for the development of multi-agent system based on the combination of standard software engineering techniques with a special focus on multi-agent systems. The resulting process model is the attempt to make our experience in the design of multi-agent systems available to other system designers. The approach presented in this paper has evolved over several years and it has been successfully applied and refined in different types of multi-agent systems. A short case study of our latest project is included in the paper

    Multi-Agent Systems and Complex Networks: Review and Applications in Systems Engineering

    Get PDF
    Systems engineering is an ubiquitous discipline of Engineering overlapping industrial, chemical, mechanical, manufacturing, control, software, electrical, and civil engineering. It provides tools for dealing with the complexity and dynamics related to the optimisation of physical, natural, and virtual systems management. This paper presents a review of how multi-agent systems and complex networks theory are brought together to address systems engineering and management problems. The review also encompasses current and future research directions both for theoretical fundamentals and applications in the industry. This is made by considering trends such as mesoscale, multiscale, and multilayer networks along with the state-of-art analysis on network dynamics and intelligent networks. Critical and smart infrastructure, manufacturing processes, and supply chain networks are instances of research topics for which this literature review is highly relevant

    Bio-Inspired Multi-Agent Technology for Industrial Applications

    Get PDF

    A Generic Multi-Layer Architecture Based on ROS-JADE Integration for Autonomous Transport Vehicles

    Get PDF
    The design and operation of manufacturing systems is evolving to adapt to different challenges. One of the most important is the reconfiguration of the manufacturing process in response to context changes (e.g., faulty equipment or urgent orders, among others). In this sense, the Autonomous Transport Vehicle (ATV) plays a key role in building more flexible and decentralized manufacturing systems. Nowadays, robotic frameworks (RFs) are used for developing robotic systems such as ATVs, but they focus on the control of the robotic system itself. However, social abilities are required for performing intelligent interaction (peer-to-peer negotiation and decision-making) among the different and heterogeneous Cyber Physical Production Systems (such as machines, transport systems and other equipment present in the factory) to achieve manufacturing reconfiguration. This work contributes a generic multi-layer architecture that integrates a RF with a Multi-Agent System (MAS) to provide social abilities to ATVs. This architecture has been implemented on ROS and JADE, the most widespread RF and MAS framework, respectively. We believe this to be the first work that addresses the intelligent interaction of transportation systems for flexible manufacturing environments in a holistic form.This work was financed by MINECO/FEDER, UE (grant number DPI2015-68602-R) and by UPV/EHU (grant number PPG17/56)

    Multi Agent Systems in Logistics: A Literature and State-of-the-art Review

    Get PDF
    Based on a literature survey, we aim to answer our main question: “How should we plan and execute logistics in supply chains that aim to meet today’s requirements, and how can we support such planning and execution using IT?†Today’s requirements in supply chains include inter-organizational collaboration and more responsive and tailored supply to meet specific demand. Enterprise systems fall short in meeting these requirements The focus of planning and execution systems should move towards an inter-enterprise and event-driven mode. Inter-organizational systems may support planning going from supporting information exchange and henceforth enable synchronized planning within the organizations towards the capability to do network planning based on available information throughout the network. We provide a framework for planning systems, constituting a rich landscape of possible configurations, where the centralized and fully decentralized approaches are two extremes. We define and discuss agent based systems and in particular multi agent systems (MAS). We emphasize the issue of the role of MAS coordination architectures, and then explain that transportation is, next to production, an important domain in which MAS can and actually are applied. However, implementation is not widespread and some implementation issues are explored. In this manner, we conclude that planning problems in transportation have characteristics that comply with the specific capabilities of agent systems. In particular, these systems are capable to deal with inter-organizational and event-driven planning settings, hence meeting today’s requirements in supply chain planning and execution.supply chain;MAS;multi agent systems

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    An agile and adaptive holonic architecture for manufacturing control

    Get PDF
    Tese de doutoramento. Engenharia Electrotécnica e de Computadores. 2004. Faculdade de Engenharia. Universidade do Port
    corecore