1,953 research outputs found

    Boolean functions: noise stability, non-interactive correlation distillation, and mutual information

    Full text link
    Let TϵT_{\epsilon} be the noise operator acting on Boolean functions f:{0,1}n{0,1}f:\{0, 1\}^n\to \{0, 1\}, where ϵ[0,1/2]\epsilon\in[0, 1/2] is the noise parameter. Given α>1\alpha>1 and fixed mean Ef\mathbb{E} f, which Boolean function ff has the largest α\alpha-th moment E(Tϵf)α\mathbb{E}(T_\epsilon f)^\alpha? This question has close connections with noise stability of Boolean functions, the problem of non-interactive correlation distillation, and Courtade-Kumar's conjecture on the most informative Boolean function. In this paper, we characterize maximizers in some extremal settings, such as low noise (ϵ=ϵ(n)\epsilon=\epsilon(n) is close to 0), high noise (ϵ=ϵ(n)\epsilon=\epsilon(n) is close to 1/2), as well as when α=α(n)\alpha=\alpha(n) is large. Analogous results are also established in more general contexts, such as Boolean functions defined on discrete torus (Z/pZ)n(\mathbb{Z}/p\mathbb{Z})^n and the problem of noise stability in a tree model.Comment: Corrections of some inaccuracie

    A stability result for the cube edge isoperimetric inequality

    Get PDF
    We prove the following stability version of the edge isoperimetric inequality for the cube: any subset of the cube with average boundary degree within KK of the minimum possible is ε\varepsilon -close to a union of LL disjoint cubes, where LL(K,ε)L \leq L(K,\varepsilon ) is independent of the dimension. This extends a stability result of Ellis, and can viewed as a dimension-free version of Friedgut's junta theorem.Comment: 12 page

    Two new results about quantum exact learning

    Get PDF
    We present two new results about exact learning by quantum computers. First, we show how to exactly learn a kk-Fourier-sparse nn-bit Boolean function from O(k1.5(logk)2)O(k^{1.5}(\log k)^2) uniform quantum examples for that function. This improves over the bound of Θ~(kn)\widetilde{\Theta}(kn) uniformly random classical examples (Haviv and Regev, CCC'15). Our main tool is an improvement of Chang's lemma for the special case of sparse functions. Second, we show that if a concept class C\mathcal{C} can be exactly learned using QQ quantum membership queries, then it can also be learned using O(Q2logQlogC)O\left(\frac{Q^2}{\log Q}\log|\mathcal{C}|\right) classical membership queries. This improves the previous-best simulation result (Servedio and Gortler, SICOMP'04) by a logQ\log Q-factor.Comment: v3: 21 pages. Small corrections and clarification
    corecore