34,702 research outputs found

    Minimal vertex covers on finite-connectivity random graphs - a hard-sphere lattice-gas picture

    Full text link
    The minimal vertex-cover (or maximal independent-set) problem is studied on random graphs of finite connectivity. Analytical results are obtained by a mapping to a lattice gas of hard spheres of (chemical) radius one, and they are found to be in excellent agreement with numerical simulations. We give a detailed description of the replica-symmetric phase, including the size and the entropy of the minimal vertex covers, and the structure of the unfrozen component which is found to percolate at connectivity c≃1.43c\simeq 1.43. The replica-symmetric solution breaks down at c=e≃2.72c=e\simeq 2.72. We give a simple one-step replica symmetry broken solution, and discuss the problems in interpretation and generalization of this solution.Comment: 32 pages, 9 eps figures, to app. in PRE (01 May 2001

    Spatial Compressive Sensing for MIMO Radar

    Full text link
    We study compressive sensing in the spatial domain to achieve target localization, specifically direction of arrival (DOA), using multiple-input multiple-output (MIMO) radar. A sparse localization framework is proposed for a MIMO array in which transmit and receive elements are placed at random. This allows for a dramatic reduction in the number of elements needed, while still attaining performance comparable to that of a filled (Nyquist) array. By leveraging properties of structured random matrices, we develop a bound on the coherence of the resulting measurement matrix, and obtain conditions under which the measurement matrix satisfies the so-called isotropy property. The coherence and isotropy concepts are used to establish uniform and non-uniform recovery guarantees within the proposed spatial compressive sensing framework. In particular, we show that non-uniform recovery is guaranteed if the product of the number of transmit and receive elements, MN (which is also the number of degrees of freedom), scales with K(log(G))^2, where K is the number of targets and G is proportional to the array aperture and determines the angle resolution. In contrast with a filled virtual MIMO array where the product MN scales linearly with G, the logarithmic dependence on G in the proposed framework supports the high-resolution provided by the virtual array aperture while using a small number of MIMO radar elements. In the numerical results we show that, in the proposed framework, compressive sensing recovery algorithms are capable of better performance than classical methods, such as beamforming and MUSIC.Comment: To appear in IEEE Transactions on Signal Processin
    • …
    corecore